На правах рукописи

БРЕДЮК ОКСАНА АЛЕКСАНДРОВНА

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ АЛКИЛКСАНТОГЕНАТНЫХ И ДИАЛКИЛДИТИОКАРБАМАТНЫХ КОМПЛЕКСОВ НИКЕЛЯ(II), МЕДИ(II) И ТАЛЛИЯ(I) ПО ДАННЫМ MAS ЯМР (¹³C, ¹⁵N), ЭПР И РСА

02.00.04 - физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Владивосток - 2009

Работа выполнена в Институте геологии и природопользования ДВО РАН

Научный руководитель:	доктор химических наук, профессор,			
	Иванов Александр Васильевич			
Официальные оппоненты:	доктор химических наук, профессор,			
	Земнухова Людмила Алексеевна			
	кандидат химических наук,			
	доцент,			
	Сенчурин Владислав Станиславович			
Ведущая организация:	Казанский государственный			

Защита состоится «<u>29</u>» сентября 2009 года в <u>12</u> часов на заседании Диссертационного совета Д 005.020.01 при Институте химии Дальневосточного отделения РАН по адресу: 690022, г. Владивосток, проспект 100-летия Владивостока, 159, Институт химии ДВО РАН.

университет

С диссертацией можно ознакомиться в Центральной научной библиотеке ДВО РАН.

Автореферат разослан « 25 » августа 2009 года

Ученый секретарь диссертационного совета, кандидат химических наук

987 — Бровкина О.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Основной областью практического применения алкилзамещенных производных ксантогеновых (Хап) кислот является флотационное обогащение сульфидных руд цветных металлов. Поэтому изучение комплексообразования переходных металлов с алкилксантогенатными лигандами может представлять интерес для теории флотации в плане понимания механизма взаимодействия ионов флотационных реагентов с поверхностью минеральных частиц. Диалкилдитиокарбаматные (Dtc) комплексы широко используются в экстракционно-фотометрическом определении металлов. Биологическое действие высокотоксичного одновалентного таллия связано с образованием прочных соединений с серосодержащими белками и подавлением активности ферментов, содержащих тиольные группы. Поэтому в последнее время резко возрос интерес к серосодержащим соединениям, эффективно связывающим таллий в устойчивые водонерастворимые формы. Для координационной химии дитиокарбаматы таллия(I) представляют интерес в связи с тем, что в их составе комплексообразователь характеризуется высокими KY = 5, 6, 7. Синтез, исследование строения и совокупности спектральных свойств Xan и Dtc комплексов является одним из актуальных направлений современной координационной химии, так как на их примере можно проследить изменение строения, устойчивости комплексов в зависимости от природы металла - комплексообразователя, а также алкильных заместителей, входящих в состав Xan и Dtc лигандов.

При выполнении работы в качестве базовых методов исследования использовались: ЭПР (с использованием приема магнитного разбавления изотопно-замещенных [⁶³Cu – 99.3(1) и ⁶⁵Cu – 99.2(1) ат.%%] комплексов меди(II) и MAS ЯМР (¹³C, ¹⁵N) спектроскопия (при естественном содержании нуклидов), рентгеноструктурный анализ и термография. Компьютерное моделирование экспериментальных спектров ЭПР проводилось во втором приближении теории возмущений с использованием программы WIN-EPR 2

SimFonia, версия 1.2 (программный продукт компании «Bruker»).

<u>Цель работы</u> состояла в синтезе, исследовании строения, спектральных и термических свойств новых Xan и Dtc комплексов никеля(II), меди(II) и таллия(I), а также гетерополиядерных комплексов меди(II)-таллия(I). Цель исследования предопределила постановку следующих задач:

- синтезировать новые Xan и Dtc никеля(II), меди(II) и таллия(I), а также гетерополиядерные комплексы меди(II)-таллия(I), включая изотопнозамещенные и магнитноразбавленные соединения;

- исследовать структурную организацию и спектральные свойства Хап и Dtc комплексов никеля(II), меди(II), таллия(I) и меди(II)-таллия(I) по данным ЭПР и MAS ЯМР (¹³C, ¹⁵N) спектроскопии;

- исследовать структурную организацию комплексов таллия(I) с циклическими пентаметилен- и гексаметилендитиокарбаматными лигандами;

- провести моделирование экспериментальных спектров ЭПР изотопнозамещенных Xan меди(II) и гетерополиядерных медно-таллиевых дитиокарбаматных комплексов во втором приближении теории возмущений;

- исследовать термические свойства комплексов таллия(I) и меди(II) с циклическими пентаметилен- и гексаметилендитиокарбаматными лигандами.

Научная новизна работы определяется следующими положениями:

- для семиядерных медно(II)-таллиевых(I) Хап комплексов состава [CuTl₆(S₂COR)₈] (R = *i*-C₄H₉, C₅H₁₁) обнаружено проявление динамического эффекта Яна-Теллера с вовлечением в сверхтонкое взаимодействие шести атомов таллия;

- получены и структурно охарактеризованы первые представители полиядерных комплексов таллия(I) с циклическими Dtc лигандами, $[Tl_2{S_2CN(CH_2)_m}_2]_n$ (m = 5, 6), основной структурной единицей которых являются биядерные молекулы состава $[Tl_2{S_2CN(CH_2)_m}_2];$

- уникальность структурной организации полиядерного *N*,*N*-циклопентаметилендитиокарбаматного комплекса таллия(I) определяется участием в ее формировании трех типов биядерных молекул $[Tl_2{S_2CN(CH_2)_5}_2]_n$, выполняющих различные структурные функции;

- получена и по данным ЭПР исследована β -форма изотопнозамещенного трехъядерного комплекса состава [$^{63/65}$ CuTl₂{S₂CN(CH₂)₆}₄] для которой, в сравнении с α -формой, отмечаются ~вдвое меньшие значения констант ДСТС от атомов таллия(I);

- выполнен расчет спиновой плотности на атомах таллия и установлен характер ее распределения по АО таллия;

- конечными продуктами термической деструкции пентаметилендитиокарбаматного комплекса таллия(I) и гексаметилендитиокарбаматного комплекса меди(II) являются сульфиды таллия(I) и меди(II) соответственно.

<u>Практическая значимость</u> результатов работы для координационной химии, ЭПР и ЯМР спектроскопии заключается в том, что:

- получен ряд новых изотопно-замещенных Хап комплексов меди(II) общего состава [$^{63/65}$ Cu(S₂COR)₂] (R = C₂H₅, *i*-C₃H₇, *i*-C₄H₉, C₅H₁₁), стабилизированных в матрице соответствующих соединений никеля(II) и охарактеризованных по данным ЭПР спектроскопии (включая моделирование экспериментальных спектров во втором приближении теории возмущений);

- синтезированы и методом MAS ЯМР ¹³С спектроскопии детально охарактеризованы Xan комплексы никеля(II), $[Ni(S_2COR)_2]$ и таллия(I), $[Tl(S_2COR)]_n$ (R = C₂H₅, *i*-C₃H₇, *i*-C₄H₉, *s*-C₄H₉, C₅H₁₁);

- получены изотопно-замещенные семиядерные медно(II)-таллиевые(I) комплексы, $[^{63/65}CuTl_6(S_2COR)_8]$ (R = *i*-C₄H₉, C₅H₁₁), строение которых предложено по данным ЭПР спектроскопии;

обнаружены системы, в которых проявление динамического эффекта
Яна-Теллера сочетается с взаимодействием неспаренного электрона меди(II) с
шестью атомами таллия;

- для полиядерных Dtc комплексов таллия(I) выявлен новый тип структурной организации, в формировании которой участвуют три типа биядерных

3

молекул [Tl₂{S₂CN(CH₂)₅}₂] с различными структурными функциями;

данные РСА для структуры нового вещества [Tl₂{S₂CN(CH₂)₅}₂]_n
включены в базу данных Кембриджского университета (депозитарный номер
CCDC 687111);

- для трехъядерного комплекса состава [^{63/65}CuTl₂{S₂CN(CH₂)₆}₄] обнаружена способность к существованию в двух кристаллических модификациях: α и β, различие между которыми проявляется в величине переноса спиновой плотности на атомы таллия.

Работа выполнена в соответствии с тематическим планом НИР Института геологии и природопользования ДВО РАН и поддержана Министерством образования и науки РФ (грант E02-5.0-150 по фундаментальным исследованиям в области естественных и точных наук - 2003-2004 гг.), ДВО РАН (гранты 05-III-Г-04-060 - 2005 г. и 06-III-В-04-099 - 2006-2008 гг. по фундаментальным и прикладным исследованиям молодых ученых), РФФИ-ДВО РАН (программа «Дальний Восток», грант 06-03-96009, 2006-2007 гг.) и РФФИ (грант 08-03-00068-а, 2008-2010 гг.).

На защиту выносятся следующие положения:

- синтез и структурная организация новых Xan и Dtc комплексов никеля(II), меди(II), таллия(I) и меди(II)-таллия(I);

- ЭПР и MAS ЯМР (¹³C, ¹⁵N) спектральные исследования полученных соединений;

- проявление в семиядерных Xan комплексах меди(II)-таллия(I) динамического эффекта Яна-Теллера с вовлечением в сверхтонкое взаимодействие шести атомов таллия.

<u>Апробация работы.</u> Основные результаты работы представлены на 53-ей (Благовещенск, 24 апреля 2003 г. Материалы конференции. Ч. 3. С. 107-111.) и 54-ой научно-практических конференциях преподавателей и студентов БГПУ (Благовещенск, 20 мая 2004 г.), докладывались на V (Благовещенск, 12-13 мая 2004 г. Материалы конференции. Т. 4. С. 50-52), VI (Благовещенск, 27-28 мая 2005 г. Материалы конференции. Т. 4. С. 90-91), VII (Благовещенск, 16-17 мая 2006 г. Материалы конференции. Кн. 2. С. 86-87) региональных научно-практических конференциях «Молодежь XXI века: шаг в будущее», на X Международной молодежной школе-конференции по актуальным проблемам химии и биологии (Владивосток, 12-19 сентября 2006 г. Тезисы докладов. С. 8), XXIII Международной Чугаевской конференции по координационной химии (Одесса, 4-7 сентября 2007 г. Тезисы докладов. С. 311) и на Международном симпозиуме по сорбции и экстракции (Владивосток, 29 сентября-4 октября 2008 г. Материалы конференции. С. 233-237).

<u>Личный вклад автора.</u> Диссертация выполнена под научным руководством д.х.н. Иванова А.В., которому принадлежит постановка цели и задач исследования. Личный вклад автора заключается в синтезе комплексных соединений; исследовании их строения и спектральных свойств методом ЭПР; в моделировании экспериментальных спектров ЭПР; интерпретации спектров ЯМР; получении монокристаллов для РСА и обработке полученных данных; обсуждении результатов и подготовке публикаций. Экспериментальные данные получены при участии к.х.н. А.В. Герасименко (РСА), проф. О.Н. Анцуткина, проф. В. Форшлинга (ЯМР).

<u>Публикации</u>. Основное содержание работы отражено в 14 публикациях, в том числе в 7 статьях (из них 5 - в рецензируемых журналах).

<u>Достоверность</u> полученных результатов определяется использованием совокупности современных физико-химических методов исследования, воспроизводимостью результатов, моделированием экспериментальных ЭПР и ЯМР спектров и взаимной согласованностью данных независимых методов исследования (ЭПР, РСА и MAS ЯМР ¹³С, ¹⁵N).

<u>Структура и объем работы.</u> Диссертационная работа состоит из введения, пяти глав, заключения, выводов, приложения и списка литературы, включающего 146 источников; изложена на 153 страницах, содержит 30 рисунков, 14 таблиц в тексте и 6 в приложении.

Содержание работы

<u>Во введении</u> обоснована актуальность темы диссертационной работы, отражены научная новизна и практическая значимость полученных результатов, изложены положения, выносимые автором на защиту.

<u>В первой главе</u> проведен анализ периодической литературы по вопросам строения и свойств алкилксантогенатных комплексов переходных металлов и диалкилдитиокарбаматов таллия(I). По результатам литературного обзора сформулированы цель и задачи диссертационного исследования.

<u>Во второй главе</u> описаны методики синтеза комплексов, приведены используемые реагенты, а также условия проведения рентгеноструктурных, термографических, ЭПР и ЯМР (¹³C, ¹⁵N) спектральных измерений.

<u>Третья глава</u> посвящена исследованию строения и спектральных свойств комплексов никеля(II) и меди(II), $[M(S_2COR)_2]$ с Хап лигандами, ROC(S)S⁻ (R = C₂H₅, *i*-C₃H₇, *i*-C₄H₉, *s*-C₄H₉, C₅H₁₁) по данным MAS ЯМР ¹³С спектроскопии. Магнитноразбавленные изотопно-замещенные комплексы меди(II) исследованы методом ЭПР спектроскопии, включая моделирование экспериментальных спектров во втором приближении теории возмущений.

Все полученные комплексы никеля(II) были охарактеризованы по данным MAS ЯМР ¹³С спектроскопии (изотропные хим.сдвиги ¹³С даны в м.д.):

[Ni(S₂COC₂H₅)₂] (I): 230.9 (-S₂CO-), 71.5 (-OCH₂-), 14.2 (-CH₃);

[Ni(S₂CO-*i*-C₃H₇)₂] (II): 229.9 (-S₂CO-), 81.4 (-OCH=), 23.9, 23.0 (1:1), (-CH₃);

[Ni(S₂CO-*i*-C₄H₉)₂] (III): 231.8 (-S₂CO-), 81.8 (-OCH₂-), 29.0 (-CH=), 21.6, 19.8 (1:1), (-CH₃);

[Ni(S₂CO-*s*-C₄H₉)₂] - расплав (IV): 230.6, 230.4 (-S₂CO-), 85.6, 84.7, 83.3 *d* (148.5)* (-OCH=), 30.6, 30.0 *t* (126.7)* (-CH₂-), 21.1, 13.2, 11.9, 20.7 *k* (127.6)*, 10.9 *k* (126.1)* (-CH₃). * Значения констант спин-спинового взаимодействия ¹J(¹³C-¹H), в Гц (*d* - дублет, *t*- триплет, *k*- квадруплет);

[Ni(S₂COC₅H₁₁)₂] (V): 231.2 (-S₂CO-), 80.1, 75.8 (1:3), (-OCH₂-), 35.6, 28.5

(1:3), 27.7, 26.5 (3:1), 22.8 (-CH₂-), 16.9, 14.5, 12.0 (1:2:1), (-CH₃).

Во всех случаях данные ЯМР ¹³С подтверждают индивидуальность полученных комплексов никеля(II) (рис. 1). В спектрах можно выделить резонансные сигналы, обусловленные -OC(S)S- группами и алкильными заместителями при атоме кислорода. Присутствие единственного сигнала ЯМР ¹³С -OC(S)S- групп (рис. 1) свидетельствует о структурной эквивалентности Xan лигандов в обсуждаемых комплексах, в отличие от структурно родственных Dtc никеля(II). (Для последних во многих случаях обнаружено проявление как внутри-, так и межмолекулярной неэквивалентности -C(S)S- групп.) Необходимо также отметить, что Xan группы характеризуются систематически гораздо большими значениями хим.сдвигов 13 C ($\delta = 230 - 232$ м.д.), чем =NC(S)S- группы в Dtc комплексах никеля(II) (δ = 203 - 209 м.д.). Это обстоятельство является отражением большей степени смещения электронной плотности с атома углерода -C(S)S- групп в Хап комплексах в направлении высокоэлектроотрицательного атома кислорода. Таким образом, данные ЯМР ¹³С согласуются с представлением о моноядерном центросимметричном строении молекул Xan никеля(II).

Рис. 1. Спектры ЯМР ¹³С поликристаллических Хап комплексов никеля(II). Звездочками отмечены «сайдбэнды» (посторонние от вращения).

Алкилксантогенатные комплексы меди(II) в индивидуальном состоянии

7

не существуют, т.к. уже в момент образования, в результате протекания межмолекулярной окислительно-восстановительной реакции, они переходят в соединения меди(I) и соответствующие диксантогениды:

 $2 \operatorname{Cu}^{2+} + 4 \operatorname{ROC}(S)S^{-} = 2 [\operatorname{Cu}(S_2 \operatorname{COR})_2] = [\operatorname{Cu}_2(S_2 \operatorname{COR})_2] + \operatorname{ROC}(S)S - S(S) \operatorname{COR}.$ Поэтому комплексы меди(II) искусственно стабилизировали в матрице соединений никеля(II), (кроме пластичного [Cu(S₂CO-s-C₄H₉)₂]). Спектры ЭПР магнитноразбавленных Хап комплексов меди(II) свидетельствуют, что в широком диапазоне соотношений Cu : Ni = 1:50 - 1000, медь занимает единственное структурное положение в матрице комплексов никеля(II), отсюда следует, что медь изоморфно замещает никель в кристаллической решетке и не внедряется в межузловые положения. Все спектры ЭПР (рис. 2, табл. 1) близки случаю аксиальной симметрии, что является отражением плоскоквадратного строения хромофоров [CuS₄], с преимущественной локализацией неспаренного электрона на $3d_{x-y}^{2-2}$ -АО меди. Во всех случаях компьютерное моделирование экспериментальных спектров позволило выявить существование заметной анизотропии g- и А-тензоров в плоскости ху (рис. 2, табл. 1), что можно объяснить наличием ромбического искажения геометрии хелатного узла [CuS₄] за счет диагональной неэквивалентности связей Cu-S. К числу общих характеристических особенностей спектров ЭПР следует также отнести присутствие квартетов разрешенной сверхтонкой структуры (СТС) от ядра атома меди $^{63/65}$ Cu (I = 3/2) во всех трех ориентациях и пика дополнительного поглощения (ДП) высокой интенсивности в области высоких полей. Моделирование осуществлялось в два этапа: на первом – проводилось моделирование спектров ЭПР в форме первых производных. Окончательная аппроксимация теоретических спектров к экспериментальным выполнялась для третьих производных, характеризующихся значительно более узкими резонансными сигналами. Сравнительный анализ позволяет отметить высокую степень качественного подобия модельных и экспериментальных спектров ЭПР. При этом первые весьма точно отражают не только положение и относительные интенсивности компонент СТС всех трех ориентаций, но и пика ДП, который при моделировании параметрически не задавался.

<u>В четвертой главе</u> исследовано строение и спектральные свойства Xan комплексов таллия(I), $[Tl(S_2COR)]_n$ (R = C₂H₅, *i*-C₃H₇, *i*-C₄H₉, *s*-C₄H₉, C₅H₁₁) и изотопно-замещенных гетерополиядерных медно(II)-таллиевых(I) комплексов, $[^{63/65}CuTl_6(S_2COR)_8]$ (R = *i*-C₄H₉, C₅H₁₁). Для полученных семиядерных комплексов обсуждается проявление динамического эффекта Яна-Теллера.

Таблица 1.

Параметры ЭПР магнитноразбавленных алкилксантогенатных комплексов меди(II)

		KOMIIJIEKCO	в меди(п)		
КОМПЛЕКС	g ₁	[*] А ₁ ^{Си} , Э	g_2	[*] А ₂ ^{Си} , Э	g ₃	[*] А ₃ ^{Си} , Э
VI. $[Cu(S_2COC_2H_5)_2]$	2.094	156/167	2.029	35/38	2.022	32/34
VII. $[Cu(S_2CO-i-C_3H_7)_2]$	2.085	154/165	2.026	39/42	2.021	35/37
VIII. $[Cu(S_2CO-i-C_4H_9)_2]$	2.084	155/166	2.026	39/42	2.019	35/37
IX. $[Cu(S_2COC_5H_{11})_2]$	2.086	152/163	2.028	42/45	2.023	34/36
* Значения констант СТС	приведен	ы для ядер '	⁵³ Cu / ⁶⁵ Cu	l .		
дфпг [$^{65}Cu{S(S)$	$CO-i-C_4H_9$] До	ΦПГ		
	86 3 V	- <u>_</u>	б	H M M M	<mark>- 86 Э</mark> -√	1 V
a'	V		б'	\ \		V

Рис. 2. Экспериментальные (а, б) и модельные (а', б') спектры ЭПР магнитноразбавленного комплекса меди(II) в форме первой (а, а') и третьей (б, б') производных.

Экспериментальные спектры ЯМР ¹³С (рис. 3) Хап комплексов таллия(I) свидетельствуют об их индивидуальной природе. В спектрах присутствуют

резонансные сигналы менее экранированных атомов углерода в составе -OC(S)S- групп и алкильных заместителей при атоме кислорода.

[Tl(S₂COC₂H₅)]_n (X): (1:1:1) - 224.0 (-S₂CO-), 71.2 (-OCH₂-), 12.8 (-CH₃);

[Tl(S₂CO-*i*-C₃H₇)]_n (XI): (1:1:2) - 225.5 (-S₂CO-), 78.7 (-OCH=), 22.1

[Tl(S₂CO-*i*-C₄H₉)]_n (XII): (1:1:1:2) - 224.5 (-S₂CO-), 80.8 (-OCH₂-), 28.1 (-CH=), 21.2 (-CH₃);

 $[Tl(S_2CO-s-C_4H_9)]_n (XIII): (1:1:1:1) - 226.2, 222.4 (-S_2CO-), 84.8, 83.2, 80.8, 79.8 (2:3:3:1), (-OCH=), 29.3, 28.9 (1:1), (-CH_2-), 21.4, 20.2 (2:3), 12.0, 10.9, 10.2 (-CH_3);$

 $[TI(S_2COC_5H_{11})]_n (XIV): (1:1:1:1:1) - 224.5 (-S_2CO-), 80.6, 79.3 (1:2), 74.3 (-OCH_2-), 34.5, 29.1, 28.8, 27.8, 23.4, 22.9, 21.1 (3:1:1), (-CH_2-), 17.7, 14.8, 12.2 (1:2:1), (-CH_3).$

Рис. 3. Спектры ЯМР ¹³С поликристаллических Хап комплексов таллия(I). Звездочками отмечены «сайдбэнды» (посторонние от вращения).

Комплексы X - XII, XIV обнаруживают синглетные сигналы ЯМР ¹³С Xan групп (рис. 3), что с одной стороны, свидетельствует о структурной эквивалентности лигандов, а с другой, отражает высокую степень симметричности молекулярных структур обсуждаемых соединений. Исключение составляет лишь *втор*-бутиловый ксантогенат таллия(I), который обнаруживает более сложную структуру резонансных сигналов ¹³С (рис. 3) в области -OC(S)S-групп. Это объясняется тем, что в составе лиганда присутствует хиральный центр (асимметрический атом углерода -OCH- групп, находящийся в тетраэдрическом окружении 4 различных заместителей). Исходный лиганд представляет собой рацемат (смесь оптических изомеров), поэтому различный характер их распределения между атомами таллия может приводить к наблюдаемой дисперсии хим.сдвига.

Сопоставление данных ЯМР ¹³С для Хап таллия(I) и комплексов никеля(II) позволяет отметить, что группы -OC(S)S- в первом случае характеризуются систематически меньшими значениями хим.сдвигов ¹³С (δ = 222 - 226 м.д.), в сравнении с соответствующими комплексами никеля(II): δ = 230 - 232 м.д. Наблюдаемое уменьшение хим.сдвигов ¹³С при переходе от комплексов никеля(II) к соединениям таллия(I) может объясняться эффектом тяжелого атома, когда система электронных облаков объемного атома таллия может более эффективно (по сравнению с никелем) участвовать в дополнительном экранировании ядра углерода -OC(S)S- группы.

Особенность магнитноразбавленных таллием(I) изотопно-замещенных изо-бутил- (XV) и амилксантогенатных (XVI) комплексов меди(II) заключается в том, что поликристаллические образцы обнаруживают спектры ЭПР (рис. 4а), характерные для изотропной жидкой фазы и включают по четыре компоненты СТС от ядер ⁶³Cu или ⁶⁵Cu (I = 3/2). При этом высокопольные компоненты СТС, в случае соединения XV, разрешаются мультиплетами ДСТС от ядер атомов таллия ^{203, 205}Tl (I = 1/2). Компьютерное моделирование позволило выявить 9-компонентный характер мультиплетов (рис. 4в). Наилучший результат моделирования основывается на представлении о взаимодействии меди(II) с шестью атомами таллия, четыре из которых структурно неэквивалентны по отношению к двум другим (табл. 2).

Рис. 4. Экспериментальные спектры ЭПР семиядерного комплекса меди(II)-таллия(I) (a); высокопольный мультиплет ДСТС от атомов таллия (переход m = -3/2): экспериментальный (б), модельный (в).

В спектрах ЭПР комплекса XVI взаимодействие неспаренного электрона меди(II) с атомами таллия проявляется в форме уширения компонент СТС.

Таллий(I) в составе координационных соединений характеризуется высокими значениями КЧ, поэтому его координационное насыщение в составе обсуждаемых комплексов достигается путем дополнительной координации атомов серы, образующих внутреннюю координационную сферу меди. Поскольку доступные для координации таллием атомы серы расположены на открытых ребрах полиэдра меди, очевидно, что вхождение в состав полиядерных образований шести атомов таллия предполагает реализацию для меди октаэдрического окружения шести атомов серы:

меди(п) таллия(п)							
КОМПЛЕКС	g_0	[*] а _{Си} , Э	<i>а</i> _{тl} , Э				
XV. $[CuTl_6(S_2CO-i-C_4H_9)_8]$	2.053	90/97	22.0 (2 Tl)				
			11.0 (4 Tl)				
XVI. [CuTl ₆ ($S_2COC_5H_{11}$) ₈]	2.051	88/95					

Параметры ЭПР магнитноразбавленных Хап комплексов меди(II)-таллия(I)

* Значения констант СТС приведены для ядер ⁶³Си / ⁶⁵Си.

В соответствии с теоремой Яна-Теллера стабилизация октаэдрических координационных полиэдров переходных металлов (в нашем случае состава $[CuS_6]$) достигается в трех эквивалентных по энергии конфигурациях, искаженных вдоль осей симметрии 4 порядка. При этом небольшая высота потенциальных барьеров между соответствующими минимумами энергии приводит к возможности быстрых переходов октаэдрической молекулярной системы между тремя этими состояниями. Формально такая ситуация имеет общие признаки с вращательной молекулярной диффузией, характерной для комплексов в изотропной жидкой фазе; и поэтому, если частота ян-теллеровских переходов превышает рабочую частоту ЭПР ($v_{IT} > v_{ESR}$), обсуждаемая молекулярная система в кристаллическом состоянии обнаруживает изотропные спектры ЭПР. Необходимой предпосылкой к проявлению динамического эффекта Яна-Теллера в обсуждаемом случае является усреднение прочности связей Cu-S в экваториальной плоскости и в аксиальных положениях октаэдра (см. вышеприведенную схему). По-видимому, такое выравнивание достигается за счет ослабления связей Cu-S в плоскости хромофора [CuS₄] вследствие дополнительной координации атомов серы в аксиальные положения меди, с одной стороны, и координации атомов серы хелатных групп меди атомами таллия, с другой. Особенность эффекта Яна-Теллера состоит в участии в сверхтонком взаимодействии атомов таллия, непосредственно не связанных с медью(II). При этом моделирование мультиплетов ДСТС позволило установить более эффективное взаимодействие меди с двумя атомами таллия (из шести). Поскольку в структуре, испытывающей искажение типа растяжения вдоль молекулярной оси *z*, основным состоянием неспаренного электрона меди(II) является $3d_{x-y}^{2-2}$ -AO (которая непосредственно направлена на атомы серы в плоскости *xy*), два атома таллия более эффективно взаимодействуют с медью(II). В двух других структурах (искаженных вдоль осей *x* и *y*) неспаренный электрон локализован преимущественно на $3d_z^2$ AO, направленной в каждом случае только на два атома серы.

<u>В пятой главе</u> методом MAS ЯМР (¹³C, ¹⁵N) спектроскопии исследованы полиядерные комплексы таллия(I) с Dtc лигандами, $[Tl_2(S_2CNR_2)_2]_n$, где R = CH₃, *i*-C₃H₇, C₄H₉, *i*-C₄H₉ μ R₂ = (CH₂)₅, (CH₂)₆. β-Форма изотопнозамешенного трехъядерного медно(II)-таллиевого(I) комплекса. $[^{63/65}$ CuTl₂{S₂CN(CH₂)₆}] изучена по данным ЭПР, а также выполнен расчет спиновой плотности на атомах таллия и установлен характер ее распределения по АО таллия. Молекулярные и кристаллические структуры комплексов таллия(I) и меди(II), включающие циклические Dtc лиганды, разрешены ме-PCA. Изучены термические свойства [Tl₂{S₂CN(CH₂)₅}₂]_n и тодом $[Cu_2{S_2CN(CH_2)_6}_1] \cdot 2[Cu{S_2CN(CH_2)_6}_2]$. Исследованы сорбционные свойства *N.N-иикло*-гексаметилендитиокарбамата свежеосажденного полимерного таллия(I), $[Tl_2{S_2CN(CH_2)_6}_2]_n$ в отношении катионов Cu^{2+} .

В спектрах ЯМР ¹³С комплексов таллия с Dtc лигандами (рис. 5, 6) присутствуют резонансные сигналы =NC(S)S- групп и алкильных заместителей при атоме азота (изотропные хим.сдвиги ¹³C, ¹⁵N даны в м.д.):

$$\label{eq:constraint} \begin{split} & [Tl_2\{S_2CN(CH_3)_2\}_2]_n \mbox{ (XVII): } 207.7 \mbox{ (-}S_2CN=\mbox{), } 45.6, \mbox{ 45.2, } 44.8 \mbox{ (-}CH_3\mbox{), } 116.4 \mbox{ (=}N-\mbox{);} \end{split}$$

[Tl₂{S₂CN(*i*-C₃H₇)₂}₂]_n (XVIII): 200.3 (-S₂CN=), 58.4 (34)^{*}, 51.7 (35)^{*} (1:1), (=NCH-), 22.8, 20.9 (3:5), (-CH₃), 162.6 (=N-);

 $[Tl_2{S_2CN(C_4H_9)_2}_2]_n$ (XIX): 203.4 (-S₂CN=), 54.1, 52.9 (2:1), (=NCH₂-), 31.0, 30.3 (2:1), 22.0; 21.6 (1:2), (-CH₂-), 17.3, 15.9 (1:1), (-CH₃), 139.1 (=N-);

 $[Tl_{2}{S_{2}CN(i-C_{4}H_{9})_{2}}_{2}]_{n} (XX): 204.4 (-S_{2}CN=), 67.6, 65.9 (38)^{*} (1:1), (=NCH_{2}-), 29.3, 28.1, 27.3 (1:3:1), (-CH-), 23.6, 22.7, 22.3, 21.9 (1:3:3:1), (-CH_{3}),$

135.3 (=N-). * Асимметричные ¹³С-¹⁴N дублеты (в Гц);

 $[Tl_2{S_2CN(CH_2)_6}_2]_n$ (XXI): 202.3 (-S₂CN=), 57.7, 51.2 (1:1), (=NCH₂-), 31.5, 30.2, 29.7, 28.2 (1:1:1:1), (-CH₂-), 140.8 (=N-);

 $\label{eq:s2CN(CH_2)_5}_2]_n \mbox{ (XXII): 202.7, 201.5, 200.3 (1:2:1), (-S_2CN=), 51.8 (=NCH_2-), 27.9 (-CH_2-), 140.2, 139.8, 137.6, 136.9 (1:1):(1:1), (=N-).$

Рис. 6. Спектры ЯМР 13 С (а) и 15 N (б) комплекса состава $[Tl_2{S_2CN(CH_2)_5}_2]_n$.

По результатам математического моделирования установлено, что в ряде случаев атомы углерода, непосредственно связанные с азотом, в спектрах ЯМР ¹³С представлены слабо разрешенными асимметричными дублетами (1:2), вследствие диполь-дипольного взаимодействия углерода с квадрупольным ялоом ¹⁴N (I = 1). Наиболее информативными являются резонансные сигналы ¹³С в области =NC(S)S- групп. При этом важно отметить, что в спектрах ЯМР и ¹³С и ¹⁵N Dtc группы представлены единственными резонансными сигналами (рис. 5). Это обстоятельство прямо указывает на эквивалентность =NC(S)S- групп в структуре обсуждаемых комплексов. Из общего ряда комплексов выпадают ЯМР ¹³С и ¹⁵N спектральные картины *N,N-иикло*пентаметилендитиокарбамата таллия(I), XXII (рис. 6). Так математическое моделирование резонансного сигнала ¹³С в области Dtc групп (рис. 6а), позволило выявить его триплетную (1:2:1) структуру. В спектре ЯМР ¹⁵N (рис. бб) прослеживается полное соответствие: присутствуют резонансные сигналы с соотношением интегральных интенсивностей 2:1:1. Более того, математическое моделирование сигнала ЯМР ¹⁵N с $\delta = 140.0$ м.д. показало, что в действительности он является результатом сложения двух (1:1) близко лежащих линий. Полученные данные указывают на присутствие в структуре XXII четырех структурно-неэквивалентных пентаметилендитиокарбаматных лигандов, что отражает его сложную структурную организацию. Анализ значений хим.сдвигов ¹⁵N комплексов XVII-XXII позволяет отметить их возрастание с ростом (+)индуктивного эффекта алкильных заместителей при атоме азота. Последнее объясняется специфическим сочетанием (+)индуктивного эффекта алкильных заместителей и мезомерного эффекта дитиокарбаматных групп. В этом случае электронная плотность с алкильных заместителей смещается не на атом азота, а на следующий за ним атом углерода. Отсюда ясно, что рост (+)индуктивного эффекта алкильных заместителей ведет к возрастанию смещения электронной плотности в структурном фрагменте R₂N-C(S)S с атома азота в направлении углерода.

Элементарная ячейка *N*,*N*-*цикло*-гексаметилендитиокарбамата таллия(I) включает 4 формульные единицы. Основной структурной единицей соединения является центросимметричная биядерная молекула $[Tl_2{S_2CN(CH_2)_6}_2]$ (расстояние T1...Tl 3.6776 Å) (рис. 7), образованная при участии двух мостиковых лигандов. Каждый атом таллия одновременно координирует все четыре атома серы двух дитиолигандов, образуя две относительно прочные: 2.960 и 2.996 Å и две менее прочные связи: 3.202 и 3.209 Å (табл. 3). Геометрия димера может быть представлена тетрагональной бипирамидой, основание которой образовано четырьмя атомами серы, а вершины заняты атомами таллия. Геометрия семичленных гетероциклических фрагментов -N(CH₂)₆ может быть аппроксимирована «скошенным креслом».

Таблица 3.

Основные длины связей (d) и валентные углы (ω) в XXI

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Угол	ω,град	Угол	ω,град
Tl-S(1)	2.960	$Tl-S(1)^b$	3.725	S(1)-T1-S(2)	57.38	$S(1)$ -Tl- $S(1)^{d}$	133.48
$Tl-S(1)^{a}$	3.202	S(1)-C(1)	1.727	$S(1)-Tl-S(1)^{a}$	106.84	$S(1)^{a}$ -Tl-S(2)	77.05
Tl-S(2)	3.209	S(2)-C(1)	1.733	$S(1)$ -Tl- $S(2)^{a}$	84.21	$S(1)^{a}$ -Tl- $S(1)^{b}$	152.74
$T1-S(2)^{a}$	2.996			$S(1)-TI-S(1)^{b}$	65.63		I

Симметрические преобразования: ^а -х, -y, -z+1; ^b -х, -y, -z+2; ^d x-1, y, z.

Рис. 7. Структура комплекса состава $[Tl_2{S_2CN(CH_2)_6}_2]_n$: а) фрагмент полиядерной цепи; б) проекция на плоскость *xz*.

Поскольку для таллия в Dtc комплексах характерны высокие значения КЧ = 5, 6 и даже 7, координационное насыщение комплексообразователя в структуре XXI достигается путем дополнительной координации атомов серы соседних димерных молекул (рис. 7а). Таким образом, каждый биядерный фрагмент объединяется с двумя соседями парами дополнительных связей Tl-S[(1)^b] (3.725 Å) и происходит формирование зигзагообразной (угол Tl-Tl-Tl равен 90.11°) полимерной цепи с ориентацией вдоль кристаллографической оси *z*. Ближайшее расстояние Tl...Tl между соседними биядерными молекулами составляет 5.6340 Å. Полимерные цепи, в свою очередь, объединяются в слой за счет дополнительной координации каждым атомом таллия атома серы в соседней цепи: Tl-S(1)^d 3.957 Å (рис. 7б). Расстояние между ближайшими атомами таллия в соседних цепях составляет 3.7264 Å. Таким образом, КЧ таллия по совокупности равно 6 (состояние *sp*³*d*²-гибридизации) и координационный полиэдр таллия можно аппроксимировать искаженной тригональной призмой. В нашем случае полиэдр таллия дополнительно искажен за счет взаимодействия с гетероциклическим фрагментом (CH₂)₆N-: расстояния Tl...H составляют 3.046 и 3.258 Å (рис. 7а).

Для пентаметилендитиокарбамата таллия(I) также характерно формирование полимерных цепей, однако уникальность структурной организации данного комплекса обусловлена одновременным присутствием трех структурно неэквивалентных биядерных молекул (рис. 8), различающихся длиной связей TI-S и значениями КЧ таллия (табл. 4). Нецентросимметричная биядерная молекула «А» включает два структурно неэквивалентных Dtc лиганда, выполняющих мостиковую функцию (рис. 8а, табл. 4). Дитиолиганды образуют две относительно прочные связи Tl-S: 2.962 и 3.047 Å (2.979 и 3.026 Å) и две менее прочные: 3.128 и 3.152 Å (3.032 и 3.278 Å). Для биядерных молекул характерно искаженно октаэдрическое строение с вершинным расположением двух атомов таллия и четырьмя атомами серы в экваториальной плоскости. Межатомное расстояние T1...Tl, опосредованно отражающее прочность биядерной молекулы, составляет 3.6053(7) Å. За счет дополнительных связей TI-S с соседними биядерными молекулами КЧ таллия повышается до 5 (для атома Tl(2)) и 6 (для Tl(1)). Таким образом, и атомы таллия в составе димера «А» занимают структурно неэквивалентные положения. Димеры «В» и «С» являются центросимметричными молекулами (рис. 86, в, табл. 4). Внутридимерное расстояние T1...Tl составляет 3.7270 и 3.7351 Å соответственно, что свидетельствует о близкой прочности биядерных молекул «В» и «С». При рассмотрении структурной организации комплекса XXII видно, что центросимметричные димеры «В» и «С» чередуются по длине полимерных цепей, тогда как нецентросимметричные димеры «А» объединяют соседние полимерные цепи в двумерные слои (рис. 9). Таким образом, относительно простому химическому составу комплекса XXII соответствует сложный характер структурной организации. Геометрия координационных полиэдров таллия в рассмотренном комплексе может быть аппроксимирована искаженной квадратной пирамидой (КЧ = 5) - атом Tl(2) в димере «А» и тригональной призмой (КЧ = 6) - димеры «В», «С» и атом Tl(1) в димере «А».

Рис. 8. Изомерные биядерные молекулы комплекса $[Tl_2{S_2CN(CH_2)_5}_2]_n$. Таблица 4.

Димер «А»			Димер	«B»	Димер «С»		
Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	d, Å
Tl(1)-S(1)	2.962	Tl(2)-S(1)	3.128	Tl(3)-S(5)	3.024	Tl(4)-S(7)	3.150
Tl(1)-S(2)	3.152	Tl(2)-S(2)	3.047	$Tl(3)-S(5)^{c}$	3.052	$Tl(4)-S(7)^{h}$	2.915
Tl(1)-S(3)	3.032	Tl(2)-S(3)	3.026	Tl(3)-S(6)	2.980	Tl(4)-S(8)	3.086
Tl(1)-S(4)	3.278	Tl(2)-S(4)	2.979	$Tl(3)-S(6)^{c}$	3.173	$Tl(4)-S(8)^{h}$	3.259
Tl(1)-S(5)	3.447	$Tl(2)-S(2)^{d}$	4.125	Tl(3)-S(3)	4.180	$Tl(4)-S(1)^{c}$	3.920
$Tl(1)-S(7)^{a}$	3.427			Tl(3)-S(8)	3.653	$Tl(4)-S(5)^{c}$	3.350

Длины связей Tl-S (d) в комплексе XXII

Симметрические преобразования: ^а x, y+1, z; ^с -x, -y, -z+2; ^d -x, y-1/2, -z+3/2; ^h -x, -y-1.

Рис. 9. Структурная организация комплекса $[Tl_2{S_2CN(CH_2)_5}_2]_n$. Спектры ЭПР изотопно-замещенных образцов магнитноразбавленного комплекса меди(II)-таллия(I) XXIII соответствуют случаю аксиальной симметрии (табл. 5, рис. 10). Значения g-факторов и констант СТС комплекса XXIII весьма близки к параметрам ЭПР гексаметилендитиокарбамата меди(II), магнитноразбавленного никелем(II) (табл. 5). Эти обстоятельства отражают S-гомогенный характер окружения меди(II) в составе гетерополиядерного комплекса XXIII, с плоско-квадратным строением хромофора [CuS_4] и преимущественной локализацией неспаренного электрона на $3d_{x-y}^{2-2}$ -AO меди. В спектрах ЭПР XXIII (рис. 10) каждая из компонент СТС от ядер ⁶³Cu/⁶⁵Cu (и в параллельной и перпендикулярной ориентациях) представлена триплетом (1:2:1) компонент ДСТС, что является результатом взаимодействия неспаренного электрона меди(II) с ядрами двух структурно эквивалентных атомов таллия 203,205 Tl (I = 1/2). Кроме того, и для высокопольного пика ДП также характерна триплетная структура. Отсюда следует, что в структуру комплекса XXIII наряду с атомом меди входят 2 структурно эквивалентных атома таллия и ему отвечает состав [CuTl₂{S₂CN(CH₂)₆]₄]. Высокое KЧ, характерное для таллия в комплексе XXI приводит к тому, что таллий дополнительно координирует атомы серы, входящие в состав Dtc групп внутренней координационной сферы меди(II) и основной структурный фрагмент XXIII

можно представить следующим образом:

21

Рис. 10. Экспериментальные (а, б) и модельные (а', б') спектры ЭПР магнитноразбавленного комплекса состава β -[⁶³CuTl₂{S₂CN(CH₂)₆}₄]в форме первой (а, а') и третьей (б, б') производных.

Таблица 5.

<u>i</u> i		±				
КОМПЛЕКС	g	A^{\parallel}_{Cu}	A^{\parallel}_{Tl}	g^{\perp}	A^{\perp}_{Cu}	A^{\perp}_{Tl}
$\beta - [^{63/65}CuTl_2 \{S_2CN(CH_2)_6\}_4]$	2.085	157/168 [*]	21.5	2.019	38/41*	23.0
α -[CuTl ₂ {S ₂ CN(CH ₂) ₆ } ₄]	2.086	159	40.6	2.025	43	42.6
$[Cu/Ni\{S_2CN(CH_2)_6\}_2]$	2.084	161/172*		∫2.019	<u>∫</u> 40	
				2.024	L 42	

Параметры ЭПР магнитноразбавленных комплексов меди(II)

* Значения констант СТС даны для ядер ⁶³Cu/⁶⁵Cu.

Проявление в экспериментальных спектрах ЭПР разрешенной ДСТС от атомов таллия позволило рассчитать изотропную ДСТС: $A_s = (A^{\parallel} + 2A^{\perp})/3$ и анизотропную часть ДСТС: $A_p = |(A^{\parallel} - A^{\perp})/3|$. Спиновая плотность на атомах таллия составляет $\rho_{T1} = 0.15\%$, и характер ее распределения по орбиталям таллия (обусловленного гибридным состоянием атома таллия): $\rho_s = 0.036\%$; $\rho_p = 0.116\%$ (что соответствует 23.6 % вкладу 6s-AO.

Важно отметить, что по данным ЭПР хемосорбция Cu^{2+} из водной фазы свежеосажденными образцами полиядерного комплекса $[Tl_2{S_2CN(CH_2)_6}_2]_n$ сопровождается одновременным образованием обеих форм (α - и β -) парамагнитного трехъядерного комплекса состава $[CuTl_2{S_2CN(CH_2)_6}_4]$. Таким образом, трехъядерный комплекс XXIII проявляет способность к существованию в двух кристаллических модификациях: α и β . Из приведенных данных (табл. 5) ясно, что основное различие между обсуждаемыми формами XXIII обусловлено различной величиной спиновой плотности на атомах таллия, которая, в свою очередь, может зависеть от прочности связывания атомов в циклических группировках [CuS_2TI].

Необычность структурной организации N, N-цикло-гексаметилендитиокарбамата меди(II) (XXIV) обусловлена чередованием в кристаллической решетке слоев моноядерных, [Cu{S₂CN(CH₂)₆}₂] и биядерных, [Cu₂{S₂CN(CH₂)₆}₄] молекул комплекса. Элементарная ячейка XXIV включает 4 моноядерные и 2 биядерные молекулы (рис. 11).

Рис. 11. Молекулярные структуры моноядерной (а) и биядерной (б) форм комплекса состава $[Cu_2{S_2CN(CH_2)_6}_4] \cdot 2[Cu{S_2CN(CH_2)_6}_2].$

В моноядерных молекулах комплексообразователь S,S'-бидентатно координирует два структурно-неэквивалентных Dtc лиганда с образованием четырехчленных металлоциклов [CuS₂C] и по совокупности находится в окружении 4 атомов серы. Центросимметричные биядерные молекулы $[Cu_{2}{S_{2}CN(CH_{2})_{6}}]_{4}$ являются результатом объединения моноядерных фрагментов [Cu{S₂CN(CH₂)₆}₂] двумя дополнительными относительно слабыми связями Cu-S (2.8421 Å) при участии двух Dtc лигандов со смешанной (терминально-мостиковой) функцией. Внутримолекулярное межатомное расстояние Си…Си составляет 3.5579 Å. Центральный восьмичленный трициклический фрагмент [Cu₂S₄C₂] характеризуется конформацией «кресло». Два других, терминальных Dtc лиганда бидентатно координированы комплексообразователем и образуют четырехчленные металлоциклы [CuS₂C]. Каждый из атомов меди находится в окружении пяти атомов серы, геометрия которого промежуточная между тетрагональной пирамидой (ТП) и тригональной бипирамидой (**ТБП**). Параметр τ , количественно описывающий полиэдр металла в комплексах с КЧ = 5 равен 0.0385, что определяет ТП геометрию полиэдра меди(II) с незначительным (3.85%) вкладом ТБП составляющей. Существование *N*, *N*-иикло-гексаметилендитиокарбаматного комплекса меди(II) одновременно в двух молекулярных формах, соотносящихся как мономер и димер, соответствует проявлению координационной полимерии.

Проведенное термическое исследование в отношении комплексов $[Tl_2{S_2CN(CH_2)_5}_2]_n$ и $[Cu_2{S_2CN(CH_2)_6}_4] \cdot 2[Cu{S_2CN(CH_2)_6}_2]$ показало, что конечными продуктами термодеструкции являются сульфиды соответствующих металлов (Tl₂S, CuS), немного загрязненные выделяющемся углеродом.

Основные выводы

1. Установлено, что кристаллическая решетка Хап комплексов никеля(II), $[Ni(S_2COR)_2]$ (R = C₂H₅, *i*-C₃H₇, *i*-C₄H₉, *s*-C₄H₉, C₅H₁₁) стабилизирует соответствующие соединения двухвалентной меди. Моделирование экспериментальных спектров ЭПР позволило установить, что в условиях магнитного разбавления геометрия хромофоров [CuS₄] в составе комплексов меди(II) может быть аппроксимирована ромбически искаженным плоским квадратом.

2. По данным ЯМР ¹³С спектроскопии установлена структурная эквивалентность Хап групп в составе комплексов никеля(II) и полиядерных комплексов таллия(I). Исключение составляет $[Tl(S_2CO-s-C_4H_9)]_n$, который обнаруживает более сложную резонансную структуру, вследствие присутствия в составе лиганда хирального центра.

3. Получены новые семиядерные медно(II)-таллиевые(I) Хап комплексы, $[CuTl_6(S_2COR)_8]$ (где R = *i*-C₄H₉, C₅H₁₁), для которых характерно проявление динамического эффекта Яна-Теллера с вовлечением в сверхтонкое взаимодействие шести атомов таллия.

4. Сравнительное исследование полиядерных Dtc комплексов таллия, $[Tl_2(S_2CNR_2)_2]_n$ (R = CH₃, *i*-C₃H₇, C₄H₉, *i*-C₄H₉; R₂ = (CH₂)₅, (CH₂)₆) выявило структурную эквивалентность =NC(S)S- групп в составе всех соединений, кроме $[Tl_2{S_2CN(CH_2)_5}_2]_n$. Зависимость значений хим.сдвигов ¹⁵N от алкильных заместителей при атоме азота обусловлена совместным проявлением (+)индуктивного эффекта алкильных заместителей и мезомерного эффекта =NC(S)S- групп.

5. Впервые получены и охарактеризованы полиядерные Dtc комплексы таллия(I) с циклическими лигандами, основной структурной единицей которых являются биядерные молекулы состава $[Tl_2{S_2CN(CH_2)_m}_2]$ (m = 5, 6):

а) в полиядерном *N*,*N*-цикло-гексаметилендитиокарбаматном комплексе
таллия(I) центросимметричные димерные молекулы [Tl₂{S₂CN(CH₂)₆}₂]
структурно унифицированы;

б) *N,N-цикло*-пентаметилендитиокарбамат таллия(I) представляет собой замечательный пример сложно организованного в структурном отношении соединения относительно простого состава. Структура комплекса формируется при участии трех типов («А», «В» и «С») неэквивалентных биядерных молекул $[Tl_2{S_2CN(CH_2)_5}_2]$ с разной структурной функцией. Конечным продуктом термической деструкции $[Tl_2{S_2CN(CH_2)_5}_2]_n$ является Tl_2S .

6. Получены и по данным ЭПР идентифицированы изотопнозамещенные β -формы трехъядерного комплекса, [^{63/65}CuTl₂{S₂CN(CH₂)₆}₄]. Выполнен расчет спиновой плотности на атомах таллия, а также выявлен характер ее распределения по AO таллия. Установлено, что хемосорбция Cu^{2+} свежеосажденным образцом $[Tl_2{S_2CN(CH_2)_6}_2]_n$ сопровождается формированием обеих форм (α - и β -) трехъядерного комплекса $[CuTl_2{S_2CN(CH_2)_6}_4]$.

7. Выявлена необычная структурная организация *N*,*N*-циклогексаметилендитиокарбаматного комплекса меди(II): одновременное его существование в двух молекулярных формах, соотносящихся как мономер и димер, является проявлением координационной полимерии. Конечным продуктом термической деструкции комплекса является сульфид меди(II).

Основное содержание работы изложено в следующих публикациях:

1. Иванов А.В., Бредюк О.А., Анцуткин О.Н., Форшлинг В. Исследование алкилксантогенатных (R = C₂H₅, *i*-C₃H₇, *i*-C₄H₉, *s*-C₄H₉, C₅H₁₁) комплексов меди(II) и никеля(II) по данным ЭПР и ЯМР ¹³С спектроскопии высокого разрешения в твердой фазе // *Коорд. химия.* - 2004. - Т. 30, № 7. - С. 514-519.

2. Иванов А.В., Бредюк О.А., Анцуткин О.Н., Форшлинг В. Структурная организация алкилксантогенатных комплексов меди(II) и таллия(I) по данным ЭПР и MAS ЯМР ¹³С спектроскопии // *Коорд. химия.* - 2005. - Т. 31, № 1. - С. 48-54.

3. Иванов А.В., Бредюк О.А., Герасименко А.В., Луценко И.А., Анцуткин О.Н., Форшлинг В. Строение полиядерных диалкилдитиокарбаматных комплексов таллия(I) и меди(II)-таллия(I) по данным MAS ЯМР (¹³C, ¹⁵N) спектроскопии, ЭПР и РСА // *Коорд. химия.* - 2006. - Т. 32, № 5. - С. 554-564.

4. Бредюк О.А. Структурная организация *N*,*N*-*цикло*-гексаметилендитиокарбаматного комплекса меди(II) по данным РСА // *Вестник АмГУ*. - 2007. -Т. 39. - С. 84-86.

5. Иванов А.В., Бредюк О.А., Герасименко А.В., Анцуткин О.Н. Синтез и строение полиядерного *N*,*N*-*цикло*-пентаметилендитиокарбамата таллия(I) по данным РСА и MAS ЯМР ¹³С, ¹⁵N - пример сложной структурной организации // Докл. Акад. наук. - 2008. - Т. 420, № 5. - С. 637-642.

6. Бредюк О.А., Лосева О.В. Хемосорбционные свойства *N,N-цикло*-гексаметилендитиокарбаматного комплекса таллия(I), [Tl₂{S₂CN(CH₂)₆}₂]_n // *Вестник АмГУ*. - 2008. - Т. 43. - С. 70-72.

7. Родина Т.А., Иванов А.В., Бредюк О.А., Герасименко А.В. Синтез, строение и термические свойства *N,N-цикло*-пентаметилендитиокарбамата таллия(I), [Tl₂{S₂CN(CH₂)₅}₂]_n, по данным PCA, MAS ЯМР ¹³C, ¹⁵N спектроскопии и термического анализа (пример сложной структурной организации) // *Коорд. химия.* - 2009. - Т. 35, № 3. - С. 172-180.