На правах рукописи

ИВАНОВ МАКСИМ АЛЕКСАНДРОВИЧ

КРИСТАЛЛИЧЕСКИЕ КОМПЛЕКСЫ ТЕТРАФЕНИЛСУРЬМЫ(V) С ДИАЛКИЛДИТИОКАРБАМАТНЫМИ И ДИАЛКИЛДИТИО-ФОСФАТНЫМИ ЛИГАНДАМИ: СИНТЕЗ И СТРОЕНИЕ (ПО ДАННЫМ MAS ЯМР ¹³С, ¹⁵N, ³¹Р И РСА)

02.00.04 - физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Владивосток - 2009

Работа выполнена в Благовещенском государственном педагогическом университете и Институте геологии и природопользования ДВО РАН.

Научный руководитель:	заслуженный деятель науки РФ, доктор химических наук, профессор Шарутин Владимир Викторович
Официальные оппоненты:	заслуженный деятель науки РФ, доктор химических наук, профессор Давидович Рувен Лейзерович
	доктор химических наук, профессор Захаров Алексей Васильевич
Ведущая организация:	Иркутский государственный университет

Защита состоится «29» сентября 2009 года в 10 часов на заседании Диссертационного совета Д 005.020.01 при Институте химии Дальневосточного отделения РАН по адресу: 690022, г. Владивосток, проспект 100-летия Владивостока, 159, Институт химии ДВО РАН.

С диссертацией можно ознакомиться в центральной научной библиотеке ДВО РАН

Автореферат разослан « <u>25</u>» <u>августа</u> 2009 г.

кандидат химических наук

Бровкина О.В.

1 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы.</u> Дитиореагенты (дитиокарбаматы, дитиофосфаты и ксантогенаты) находят широкое практическое применение во многих областях. Во флотационном обогащении полиметаллических сульфидных руд цветных металлов дитиореагенты ионного строения (и их смеси) используются в качестве коллективных и селективных реагентов собирателей. Поэтому исследование комплексообразования металлов с дитиорегентами представляет интерес для теории и практики флотации (при установлении способа закрепления ионных дитиореагентов на поверхности минеральных частиц).

Устойчивый интерес к комплексам металлов с дитиореагентами сохраняется на протяжении уже многих десятилетий, что обусловлено многообразием практически полезных свойств этих соединений, высокой реакционной способностью, доступностью исходных реагентов и относительной простотой синтеза. Дитиореагенты и комплексы на их основе находят широкое применение в органическом синтезе, в аналитической химии и химической технологии, в производстве резины, технике и медицине, в сельском хозяйстве, биологии и т.д. Комплексы металлов с дитиолигандами представляют практический интерес как технологические предшественники сульфидов переходных металлов в процессах получения полупроводниковых и люминесцентных пленок. Для дитиокарбаматов целого ряда металлов установлена способность к образованию с фуллеренами межмолекулярных донорно-акцепторных комплексов, которые являются перспективными соединениями при создании новых многофункциональных материалов для электронной промышленности. Поэтому синтез новых диалкилдитиокарбаматных и диалкилдитиофосфатных комплексов, исследование их строения и свойств является актуальной залачей.

При выполнении работы в качестве базовых методов исследования

использовались: рентгеноструктурный анализ и мультиядерная (¹³C, ¹⁵N, ³¹P) ЯМР спектроскопия высокого разрешения в твердой фазе (далее **MAS ЯМР**). Для дополнительной характеристики диалкилдитиофосфатных комплексов из полных MAS ЯМР спектров проводился расчет параметров анизотропии тензора хим.сдвига ³¹P: анизотропия хим.сдвига, $\delta_{aniso} = (\delta_{zz} - \delta_{iso})$ и параметр асимметрии тензора хим.сдвига, $\eta = (\delta_{yy} - \delta_{xx})/(\delta_{zz} - \delta_{iso})$.

<u>Цель работы</u> заключалась в синтезе, установлении структурной организации и MAS ЯМР (13 C, 15 N, 31 P) спектральных характеристик кристаллических *N*,*N*-диалкилдитиокарбаматных и *O*,*O*'-диалкилдитиофосфатных комплексов тетрафенилсурьмы(V), [Sb(C₆H₅)₄]⁺ (включающей стерически экранированный металлический центр), выявлению зависимости между магниторезонансными параметрами и структурой полученных соединений. Для достижения поставленной в диссертационной работе цели необходимо было решить следующие задачи:

- синтезировать новые *N*,*N*-диэтилдитиокарбаматные и *O*,*O*'-диалкилдитиофосфатные комплексы тетрафенилсурьмы(V) и тетра-*пара*толилсурьмы(V);

- исследовать строение и спектральные свойства полученых комплексов тетрафенилсурьмы(V) по данным мультиядерной (13 C, 15 N, 31 P) MAS ЯМР спектроскопии и PCA;

- выполнить анализ параметров анизотропии хим.сдвига ³¹ Р (δ_{aniso} и η) бидентатно-терминальных и монодентатно координированных *O*,*O*' диалкилдитиофосфатных лигандов в составе комплексов тетрафенилсурьмы(V);

 провести отнесение резонансных сигналов ¹⁵N и ¹³C к структурным положениям атомов в разрешенных молекулярных структурах *N*,*N*диэтилдитиокарбаматных комплексов.

Научная новизна работы определяется следующими положениями:

- препаративно выделены и по данным MAS ЯМР (13 C, 15 N, 31 P) спектроскопии охарактеризован ряд новых кристаллических комплексов тетрафенилсурьмы(V) и тетратолилсурьмы(V) с *N*,*N*-диалкилдитиокарбаматными и *O*,*O*'-диалкилдитиофосфатными лигандами состава [Sb(Ar)₄(S₂CNR₂)] (Ar = C₆H₅, R₂ = (CH₂)₆; Ar = *p*-CH₃-C₆H₄; R = C₃H₇) и [Sb(C₆H₅)₄{S₂P(OR)₂}] (R = C₃H₇, *i*-C₃H₇, *i*-C₄H₉, *s*-C₄H₉, *c*-C₆H₁₁), а также [Sb(C₆H₅)₄{S₂P(O-*i*-C₃H₇)₂]-^{*i*}/₂C₆H₆;

- по данным PCA показано, что дитиокарбаматные комплексы тетраарилсурьмы(V) характеризуются искаженно-октаэдрическим строением с S,S'-бидентатной координацией дитиокарбаматных групп в экваториальной плоскости. Кристаллическая (N,N-цикло-гексаметилендитиокарбамато-S,S')тетрафенилсурьма(V), [Sb(C₆H₅)₄{S₂CN(CH₂)₆}] одновременно существует в двух молекулярных формах, соотносящихся как конформационные изомеры;

- в структуре комплексов тетрафенилсурьмы(V) обнаружены принципиально различные способы координации O,O'-диалкилдитиофосфатных лигандов к комплексообразователю: S,S'-бидентатный и Sмонодентатный. Выявленное отличие в координации лигандов обусловило формирование искаженно-октаэрических, для [Sb(C₆H₅)₄{S₂P(OR)₂}] (R = C₃H₇, *c*-C₆H₁₁), и тригонально-бипирамидальных, для [Sb(C₆H₅)₄{S₂P(OR)₂}] (R = *i*-C₃H₇, *i*-C₄H₉, *s*-C₄H₉) и [Sb(C₆H₅)₄{S₂P(O-*i*-C₃H₇)₂}]-^{*i*}/₂C₆H₆, молекулярных структур;

- расчеты анизотропии хим.сдвига ($\delta_{aniso} = \delta_{zz} - \delta_{iso}$) и параметра асимметрии [$\eta = (\delta_{yy} - \delta_{xx})/(\delta_{zz} - \delta_{iso}$]] позволили выявить принципиально различный характер анизотропии хим.сдвига ³¹Р для монодентатно коор динированных и бидентатно-терминальных дитиофосфатных групп.

<u>Практическая значимость</u> результатов работы для химии и ЯМР спектроскопии заключается в том, что:

- систематизированные изотропные хим.сдвиги ¹³C, ¹⁵N и ³¹P могут

3

быть использованы для идентификации координационных соединений, а параметры (δ_{aniso} и η), количественно характеризующие анизотропию хим.сдвига ³¹P, для установления структурного состояния дитиофосфатных групп в составе комплексов сурьмы;

- на основе представлений о различном вкладе двоесвязанности в формально ординарную связь =N-C(S)S- выполнено отнесение резонансных сигналов ¹³C и ¹⁵N к структурным положениям атомов в разрешенных структурах конформеров [Sb(C₆H₅)₄{S₂CN(CH₂)₆}];

- из полных MAS ЯМР ³¹Р спектров были построены диаграммы χ^2 -статистики для расчета параметров анизотропии хим. сдвига ³¹Р (η и δ_{aniso}). Установлено, что тензоры хим.сдвига *S*,*S*'-бидентатно координированных *O*,*O*'-дипропил- и *O*,*O*'-ди-*цикло*-гексилдитиофосфатных лигандов характеризуются симметрией близкой к ромбической: $\eta = 0.98$, $\delta_{aniso} = -84.1$ м.д. и $\eta = 0.65$, $\delta_{aniso} = 80.5$ м.д., соответственно. Для *S*-монодентатных *O*,*O*'-ди-*изо*-пропил-, *O*,*O*'-ди-*изо*-бутил- и *O*,*O*'-ди-*виор*-бутилдитиофосфатных лигандов тензоры хим.сдвига ³¹Р преимущественно аксиально-симметричные (для случая δ_{xx} , $\delta_{yy} > \delta_{zz}$): $\eta = 0.12-0.38$, $\delta_{aniso} = -101.7-(-120.2)$ м.д;

- данные PCA для структур шести новых соединений: $[Sb(C_6H_5)_4{S_2CN(CH_2)_6}], [Sb(p-CH_3-C_6H_4)_4{S_2CN(C_3H_7)_2}],$ $[Sb(C_6H_5)_4{S_2P(OC_3H_7)_2}], [Sb(C_6H_5)_4{S_2P(O-i-C_4H_9)_2}], [Sb(C_6H_5)_4{S_2P(O-i-C_4H_9)_2}], [Sb(C_6H_5)_4{S_2P(O-i-C_3H_7)_2}].$ $s-C_4H_9)_2\}] и [Sb(C_6H_5)_4{S_2P(O-i-C_3H_7)_2}].$ Jeta = 5

Работа выполнена в соответствии с планами НИР Благовещенского государственного педагогического университета и Института геологии и природопользования ДВО РАН, поддержана грантами РФФИ-ДВО РАН (программа «Дальний Восток», 2006-2007 гг.), проект № 06-03-96009 и Президиума ДВО РАН (по фундаментальным и прикладным исследова-

На защиту выносится:

- синтез и строение *N*,*N*-диалкилдитиокарбаматных и *O*,*O*'-диалкилдитиофосфатных комплексов тетрафенилсурьмы(V) и тетра-*пара*-толилсурьмы(V);

- MAS ЯМР (¹³C, ¹⁵N, ³¹P) спектральное исследование кристаллических *N*,*N*-диалкилдитиокарбаматных и *O*,*O*'-диалкилдитиофосфатных комплексов тетрафенилсурьмы(V);

- отнесение резонансных сигналов ЯМР ¹⁵N и ¹³C к структурным положениям атомов в разрешенных молекулярных структурах.

Апробация работы. Основные результаты работы докладывались на VI и VII региональных межвузовских научно-практических конференциях "Молодежь XXI века: шаг в будущее" (Благовещенск, 27-28 апреля 2005 г., Тезисы докл. С. 87-88 и 16-17 мая 2006 г., Тезисы докл. С. 92-93).

<u>Личный вклад автора.</u> Диссертация выполнена под научным руководством д.х.н. проф. В.В. Шарутина, которому принадлежит постановка цели и задач исследования. Личный вклад автора заключается в синтезе комплексных соединений; исследовании их строения и спектральных свойств методами ЯМР спектроскопии (большинство измерений MAS ЯМР было выполнено автором в Университете технологий г. Лулео (Швеция) в июле-августе 2006 г.); получении монокристаллов для РСА; в обработке и интерпретации полученных данных. Экспериментальная часть исследования выполнена при участии к.х.н. А.В. Герасименко (РСА), проф. О.Н. Анцуткина и проф. В. Форшлинга (MAS ЯМР).

<u>Публикации.</u> По материалам диссертации опубликовано 4 статьи в ведущих рецензируемых научных журналах, определенных Высшей аттестационной комиссией.

Достоверность результатов работы определяется взаимной согла-

сованностью данных независимых методов (ЯМР и РСА), надежной воспроизводимостью результатов, совместным использованием современных методов исследования: мультиядерной (¹³C, ¹⁵N, ³¹P) MAS ЯМР спектроскопии и РСА, пофрагментным математическим моделированием спектров ЯМР и расчетом параметров анизотропии хим.сдвига ³¹P.

<u>Структура и объем диссертации.</u> Работа изложена на 137 страницах, включает 19 таблиц и 26 рисунков; состоит из введения, четырех глав, заключения, выводов, приложения и списка литературы, включающего 113 источников.

Содержание работы

<u>Во введении</u> обоснована актуальность диссертационного исследования, сформулированы цель и задачи работы, а также научная новизна и практическая значимость полученных результатов, приведены положения, выносимые на защиту.

<u>В первой главе</u> проведен анализ периодической научной литературы по вопросам синтеза, строения и свойств *N*,*N*-диалкилдитиокарбаматных и *O*,*O*'-диалкилдитиофосфатных комплексов сурьмы в различных состояниях окисления. По результатам литературного обзора сформулированы цели и задачи диссертационного исследования.

Во второй главе описаны методики получения комплексов тетрафенилсурьмы(V) и тетратолилсурьмы(V), приведены используемые реагенты, а также изложены методики рентгеноструктурных и ЯМР (13 C, 15 N, 31 P) спектральных измерений.

<u>Третья глава</u> посвящена исследованию разнолигандных комплексов тетрафенил- и тетратолилсурьмы, $[Sb(C_6H_5)_4(S_2CNR_2)]$, где $R = CH_3$ (соединение I), C_2H_5 (II), C_3H_7 (III), $R_2 = (CH_2)_6$ (IV) и $[Sb(p-CH_3-C_6H_4)_4\{S_2CN(C_3H_7)_2\}]$ (V) по данным MAS ЯМР (¹³C, ¹⁵N) спектроскопии и PCA. Молекулярные и кристаллические структуры IV и V разрешены по данным PCA. Для соединения IV, существующего в форме двух конформационных изомеров проведено отнесение резонансных сигналов 13 С и 15 N к структурным положениям атомов =NC(S)S- групп в молекулярных структурах конформеров.

Кристаллические соединения I-IV и соответствующие диалкилдитиокарбаматы натрия Ia-IVa были охарактеризованы по данным MAS ЯМР ¹³С. ¹⁵N (б. м.д.): I – 201.7 (–S₂CN=); 47.3, 46.1 (1:1, –CH₃); 166, 147.1, 139.9, 135.3, 131.4, 128.8, 125.3 ($C_{c}H_{5-}$). Ia – 209.7, 207.4 (1:1, $-S_{2}CN_{=}$); 47.5, 47.0 $(1:1, -CH_2)$; 116.7 (-N=). II - 198.9 (-S₂CN=); 49.3 (=NCH₂-); 14.4, 12.8 (1:1, -CH₃); 163, 144.5, 143.2, 136.4, 134.0, 130.2, 129.8, 128.47, 128.1, 126.9 (C_6H_5-) ; 127.3 (-N=). IIa - 206.5 (-S₂CN=); 48.6 (=NCH₂-); 13.2 (-CH₃); 139.1 (-N=). III - 201.2 (-S₂CN=); 57.4, 56.7 (1:1, =NCH₂-); 20.9, 20.1 (1:1, -CH₂-); 12.2, 11.3 (1:1, -CH₃); 147.1, 143.8, 135.9, 134.0, 132.2, 129.8, 129.0, 128.3, 126.6 (C_6H_5 -); 123.3 (-N=). IIIa - 208.3 (-S₂CN=); 59.4, 57.9 (1:1, =NCH₂-); 22.3, 21.5 (1:1, -CH₂-); 12.6, 11.5 (1:1, -CH₃). IV - 201.9, 201.4 (1:1, -S₂CN=); 59.1, 58.5, 56.8, 55.7 (1:1:1:1, =NCH₂-); 28.4, 27.4, 26.4, 24.5, 23.9 (1:1:2:2:2, -CH₂-); 163, 146.9, 146.6, 145.2, 140.5, 136.6, 135.8, 134.3, 131.3, 130.7, 130.0, 129.0, 128.4, 127.2, 126.8, 126.2 (C₆H₅--); 123.0, 120.0 (1:1, -N=). **IVa** - 206.3 (-S₂CN=); 60.3, 55.5 (1:1, =NCH₂-); 29.8, 27.0, 26.2, 24.9 (1:1:1:1, -CH₂-); 135.2 (-N=).

В спектрах MAS ЯМР ¹³С комплексов сурьмы I–IV (рис. 1) присутствуют резонансные сигналы дитиокарбаматных (**Dtc**) лигандов (в области =NC(S)S– групп и алкильных заместителей при атоме азота), а также =CH– и =C= групп ароматических колец C₆H₅-. Значительное уширение, наблюдаемое для резонансных сигналов ¹³С атомов углерода, непосредственно связанных с металлом (163 – 166 м.д.), обусловлено взаимодействием с «квадрупольными» ядрами ¹²¹Sb (I = 5/2; 57.25 ат.%) и ¹²³Sb (I = 7/2; 42.75 ат.%). Сопоставление хим.сдвигов ¹³С и ¹⁵N =NC(S)S- групп в комплексах сурьмы и соответствующих Dtc натрия позволяет отметить, что ковалентное связывание Dtc лигандов приводит к повышению степени электронного экранирования ядер и углерода и азота. Наиболее информативной является область групп =NC(S)S-. В спектрах соединений I – III они представлены единственными резонансными сигналами ¹³C (рис. 1 а – в), тогда как для соединения IV характерно присутствие дублета (1:1) сигналов (рис. 1 г).

Рис. 1 Спектры MAS ЯМР ¹³С комплексов состава [Sb(C₆H₅)₄(S₂CNR₂)]: a) R = CH₃; б) C₂H₅; в) C₃H₇; г) R₂ = (CH₂)₆.

Полученные данные позволяют сделать вывод, что первые существуют в единственных молекулярных формах, а соединение IV в кристаллическом состоянии представлено двумя изомерными формами. Поэтому присутствие в спектрах ЯМР ¹⁵N соединений II и III одного резонансного сигнала (рис. 2 а, б) и двух сигналов равной интенсивности для IV (рис. 2 в) представляется вполне ожидаемым.

Для проверки вывода о существовании изомерных молекулярных форм IV, его структура была установлена по данным PCA. Элементарная ячейка IV включает 8 молекул [Sb(C₆H₅)₄{S₂CN(CH₂)₆}], 4 из которых структурно-неэквивалентны по отношению к 4 другим. В обоих случаях атомы сурьмы находятся в искаженно октаэдрическом окружении [C₄S₂]. В экваториальной плоскости металл координирует Dtc лиганд (посредством двух атомов серы) и два наиболее прочно связанных циклических

а) С₂Н₅; б) С₃Н₇; в) (СН₂)_{6.}

фрагмента C₆H₅- (рис. 3). Два других фенильных фрагмента, с меньшей прочностью связывания, занимают аксиальные положения. Прочность связывания Dtc лигандов в изомерных молекулах заметно различается: Sb(1)-S(1) – 2.7169 Å, Sb(1)-S(2) – 2.741 Å и Sb(2)-S(3) – 2.7211 Å, Sb(2)-S(4) – 2.7238 Å. В обеих молекулах аксиальный угол C-Sb-C отклоняется от 180° также различно: 169.0 и 169.6°. Бидентатная координация Dtc лигандов приводит к образованию четырехчленных металлоциклов [SbS₂C]. Хотя, обычно металлоциклы данного типа характеризуются плоскостным строением, значения торсионных углов Sb-S-S-C (160.9 и -166.1°) в обеих молекулах свидетельствуют о заметном отклонении атомов обсуждаемой группировки от плоскости.

В Dtc лигандах связь N-C(S)S заметно короче связей N-CH₂, что свидетельствует о вкладе двоесвязанности в формально ординарную связь (или, что, то же самое, о примешивании sp^2 - к sp^3 -гибридному состоянию атома азота). Проведенный сравнительный анализ позволяет выявить значительное структурное подобие молекул «А» (Sb1) и «В» (Sb2)

Рис 3. Молекулярные структуры двух конформеров комплекса IV. и классифицировать их как конформационные изомеры (когда равновесное состояние многоатомной молекулярной системы достигается в двух или нескольких близких по энергии конфигурациях).

Отнесение резонансных сигналов ¹³С и ¹⁵N к структурным положениям атомов в конформерах IV основывалось на представлении о различном вкладе двоесвязанности в =N-C(S)S- группах. Вклад двоесвязанности приводит к переносу электронной плотности с атома азота в направлении –C(S)S–группы, в результате чего электронное экранирование ядра азота понижается, а углерода повышается. Прочность связи N(1)-C(1) – 1.330 Å - в молекуле «А» выше, чем в молекуле «В», N(2)-C(32) - 1.338 Å. Следовательно, в первом случае вклад двоесвязанности выше, так же как и смещение электронной плотности =N→C(S)S-. Таким образом, резонансный сигнал ¹⁵N с большим значением хим.сдвига ($\delta = 123.0$ м.д.) следует отнести к менее экранированному ядру атома N(1), а сигнал с $\delta(^{15}N) = 120.0$ м.д. к атому N(2). Аналогично, сигналы ЯМР ¹³С с меньшим (201.4 м.д.) и большим (201.9 м.д.) хим.сдвигами отнесены, соответственно, к более (C1) и менее (C32) экранированным ядрам углерода.

Соединение V, в отличие от IV, существует в единственной молекулярной форме. Элементарная ячейка V включает 8 структурно-эквива-

10

лентных молекул [Sb(*p*-CH₃-C₆H₄)₄{S₂CN(C₃H₇)₂}] (рис. 4).

Полиэдр комплексообразователя [SbC₄S₂] характеризуется искаженно октаэдрическим строением, с бидентатной координацией в экваториальной плоскости N,N-дипропилдитиокарбаматного лиганда и двух наиболее прочно связанных циклических фрагментов p-CH₃-C₆H₄-. Менее прочно связанные толильные циклы находятся в аксиальных положениях. Аксиальный угол C-Sb-C в октаэдре заметно отклоняется от идеального (180°) и составляет 167.0°.

Рис 4. Молекулярная структура [Sb(p-CH₃-C₆H₄)₄{S₂CN(C₃H₇)₂}].

<u>В четвертой главе</u> приводятся данные по синтезу, структурному и MAS ЯМР (¹³C, ³¹P) спектральному исследованию разнолигандных комплексов тетрафенилсурьмы(V) общего состава [Sb(C₆H₅)₄{S₂P(OR)₂}] (VI - R = C₃H₇, VII - *i*-C₄H₉, VIII - *s*-C₄H₉, IX - *c*-C₆H₁₁, X - *i*-C₃H₇), а также сольватированной формы XI – [Sb(C₆H₅)₄{S₂P(O-*i*-C₃H₇)₂]- $\frac{1}{2}$ C₆H₆, структура которых включает симметрично замещенные *O*,*O*'-диалкилдитиофосфатные (**Dtph**) лиганды. В полученных соединениях обнаружены принципиально различные способы координации Dtph групп: *S*,*S*'бидентатно-хелатный (для *O*,*O*'-дипропил- и *O*,*O*'-ди-*цикло*-гексилдитиофосфатного лигандов) и *S*-монодентатный (для *O*,*O*'-ди-*изо*-пропил-,

О.О'-ди-изо-бутил- и О.О'-ди-втор-бутилдитиофосфатного лигандов). Различная координация Dtph лигандов предопределяют различную геометрию молекулярных структур комплексов (искаженную октаэдрическую и тригонально-бипирамидальную). Форма полных MAS ЯМР ³¹Р спектров комплексов, включающих бидентатно-хелатные дипропил- и ди-иикло-гексилдитиофосфатный лиганды, соответствует преимущественно ромбическим тензорам хим.сдвига ³¹Р. Тогда как MAS ЯМР ³¹Р спектры ди-изо-пропил-, ди-изо-бутил-И ди-втор-бутилдитиофосфатных комплексов указывают на аксиально-симметричные тензоры хим.слвига ³¹Р монодентатно координированных Dtph групп. Для количественной характеристики структурных состояний фосфора в составе Dtph лигандов с различными структурными функциями, из MAS ЯМР ³¹Р спектров были рассчитаны параметры анизотропии тензора хим.сдвига ³¹Р: анизотропия хим.сдвига - $\delta_{aniso} = (\delta_{zz} - \delta_{iso})$ и параметр асимметрии, η = $(\delta_{vv} - \delta_{xx})/(\delta_{zz} - \delta_{iso})$. (Значение $\eta = 0$ соответствует аксиально-симметричному тензору хим.сдвига. Возрастание η в диапазоне 0-1 отражает рост вклада ромбической компоненты.) Обсуждается взаимосвязь между данными MAS ЯМР ³¹Р и разрешенными молекулярными структурами дитиофосфатных комплексов тетрафенилсурьмы(V).

Кристаллические комплексы VI–XI и соответствующие диалкилдитиокарбаматы натрия VIa–XIa были охарактеризованы по данным MAS ЯМР ¹³C (δ , м.д.): VI – 66.7, 65.7 (1:1, –OCH₂–); 25.3, 24.8 (1:1, –CH₂–); 11.9, 10.0 (1:1, –CH₃); 149.4, 136.6, 134.9, 132.9, 131.6, 130.5, 129.5, 128.6 (C₆H₅–). VIa – 71.7, 68.9, 68.8 (2:1:1, –OCH₂–); 25.0, 24.1 (1:1, –CH₂–); 10.2, 9.9, 8.9 (1:2:1, –CH₃). VII – 73.1, 71.2 (1:1, –OCH₂–); 30.1, 29.5 (1:1, –CH=); 20.6, 20.1, 19.6, 17.9 (1:1:1:1, –CH₃); 138.4, 135.3, 133.1, 130.8, 130.1, 129.7 (C₆H₅–). VIIa – 75.1, 74.2, 73.5, 73.2, 72.9 (–OCH₂–); 29.9, 29.8, 29.7 (–CH=); 21.1, 21.0, 20.9, 20.8, 20.7, 20.6, 20.4, 20.3, 20.2, 20.1 (–CH₃). VIII – 76.1, 74.4, 73.3 $(-\text{OCH}=); 21.6, 19.0 (-\text{CH}_3); 30.8 (-\text{CH}_2-); 11.7, 10.5, 9.3 (-\text{CH}_3); 137.6, 136.3, 134.3, 132.8, 131.4, 127.9 (C_6H_5-).$ **VIIIa** $– 77.5 (-OCH=); 22.0, 21.2 (-CH_3); 31.7, 31.5, 31.1 (-CH_2-); 12.0 (-CH_3).$ **IX**– 74.8, 73.7 (-OCH=); 35.5 (*o* $-CH_2-); 26.1 ($ *m* $-CH_2-); 25.1 ($ *p* $-CH_2-); 158.7, 141.0, 137.5, 135.4, 131.2, 130.0, 129.2 (C_6H_5-);$ **IXa**– 79.9, 78.8, 78.1, 77.1 (1:1:1:1, -OCH=); 35.7, 35.2, 34.7, 33.9 (*o* $-CH_2-); 26.2 ($ *m*-,*p* $-CH_2-).$ **X** $– 70.7, 69.9, 69.8 (-OCH=); 26.2, 25.3, 24.8, 24.2, 22.0 (-CH_3); 137.9, 134.7, 134.0, 133.2, 130.4 (C_6H_5-).$ **XI** $– 70.8, 69.9, 68.7, 68.2 (-OCH=); 25.6, 25.1, 25.0, 23.0 (1 : 1 : 1 : 1, -CH_3); 140.1, 138.3, 135.3, 133.0, 130.3 (C_6H_5-); 129.3 (C_6H_6).$ **Xa** $– 73.0, 72.8, 70.5, 69.9 (1:1:1:1, -OCH=), 27.0, 26.7, 26.3, 25.4, 25.0, 24.1 (1:1:2:6:2:4, -CH_3).$

В экспериментальных MAS ЯМР ¹³С спектрах кристаллических *O,O*'-диалкилдитиофосфатных комплексов тетрафенилсурьмы (V) VI – XI присутствуют резонансные сигналы от алкильных заместителей, входящих в состав Dtph лигандов, а также от =C= и =CH– групп четырех ароматических колец C₆H₅– (рис. 5). Хим.сдвиги сигналов ЯМР ¹³С групп –OCH₂–, –OCH=, –CH₂–, –CH= и –CH₃ лежат в диапазоне 9.3 – 76.1 м.д. Сигналы менее экранированных структурных положений ¹³С в ароматических C₆H₅– группах лежат в диапазоне 127.9 – 158.7 м.д. На рис. 6 приведены полные MAS ЯМР ³¹Р спектры кристаллических комплексов VI и VII при двух частотах вращения образцов. В центре тяжести каждого из спектров присутствует единственный резонансный сигнал (с изотропным хим.сдвигом ³¹Р), что свидетельствует о структурной эквивалентности Dtph лигандов в составе каждого из комплексов тетрафенилсурьмы(V).

Анализ изотропных хим.сдвигов ³¹Р разнолигандных комплексов сурьмы(V) VI и VII и кристаллических Dtph калия (табл. 1) позволяет в первом случае отметить более экранированные положения ³¹Р (меньшие значения хим.сдвигов ³¹Р в δ -шкале). Таким образом, формирование ковалентной связи Dtph групп с сурьмой лежит в основе дополнительного

экранирования ядер фосфора. Несмотря на близкие значения $\delta(^{31}P)$ обсуждаемых комплексов сурьмы(V), форма их полных MAS ЯМР ^{31}P спект-

Рис 5. MAS ЯМР ¹³С спектры кристаллических комплексов состава [Sb(C₆H₅)₄{S₂P(OR)₂}]: a) C₃H₇; б) *i*-C₄H₉.

Рис. 6. Спектры MAS ЯМР ³¹Р комплексов общего состава [Sb(C₆H₅)₄{S₂P(OR)₂}]: a, a') R = C₃H₇; б, б') R = *i*-C₄H₉. Частоты вращения образцов: a, б) 1000 Гц и a', б') 3000 Гц.

ров (рис. 6) абсолютно различна и отражает преимущественно ромбический - $\eta = 0.98$ (VI) и аксиально-симметричный - $\eta = 0.12$ (VII) характер тензоров хим.сдвига ³¹P. MAS ЯМР ³¹P спектральное исследование [1] кристаллических *O*, *O*'-диалкилдитиофосфатных комплексов цинка, никеля(II), кадмия и свинца(II) позволяют сделать вывод, что именно способ координации Dtph групп в комплексах определяет тип тензора хим. сдвига ³¹P. Для проверки структурных выводов, сделанных на основе данных MAS ЯМР ³¹P, молекулярные структуры [Sb(C₆H₅)₄{S₂P(OR)₂}] (R = C₃H₇, *i*-C₄H₉) были разрешены по данным прямого структурного метода PCA. Внутренняя сфера комплекса VII, [Sb(C₆H₅)₄{S₂P(O-*i*-C₄H₉)₂}] включает 4 фенильных группы и S-монодентатно координированный *O*,*O*'-ди-*изо*-бутилдитиофосфатный лиганд (рис. 7):

Рис. 7. Молекулярная структура [Sb(C_6H_5)₄{S₂P(O-*i*-C₄H₉)₂}].

По совокупности они образуют искаженное тригонально-бипирамидальное (**ТБП**) окружение комплексообразователя с КЧ сурьмы равным 5. Три фенильные группы, образующие наиболее прочные связи с металлом: Sb–C(21, 31, 41) (2.104 – 2.115 Å), входят в состав экваториальной плоскости ТБП. Тогда как четвертая, менее прочно связанная C_6H_5 – группа Sb–C(11) 2.147 Å, и дибутилдитиофосфатный лиганд Sb-S(1) 2.9092 Å занимают аксиальные положения. В искаженном ТБП полиэдре сурьма выходит из экваториальной плоскости (образованной тремя ато-

мами серы) на 0.2706 Å в направлении аксиально координированного атома углерода C(11). Аксиальный угол C(11)-Sb-S(1) составляет 176.23°, что довольно близко к значению соответствующего угла идеальной тригональной бипирамиды – 180°. Однако, наблюдаемое отклонение обсуждаемого угла от 180° указывает на вклад тетрагонально-пирамидальной (TII) составляющей в геометрию полиэдра сурьмы [SbC₄S]. Для количественной характеристики геометрии полиэдра был использован параметр τ , задаваемый как (α - β)/60 (в нашем случае α и β – два наибольших угла LSbL, $\alpha > \beta$). В идеальной ТП (C_{4v}), $\tau = 0$, так как $\alpha = \beta$. В правильной ТБП (C_{3v}) аксиальный угол (α) LSbL равен 180°, тогда как экваториальный (B) составляет 120°, определяя значение $\tau = 1$. Все множество полиэдров с вкладами от 100% ТБП до 100% ТП может быть охарактеризовано значениям τ в диапазоне от 1 до 0. В молекуле VII, [Sb(C₆H₅)₄{S₂P(O-*i*-C₄H₉)₂] два наибольших угла LSbL: C(11)-Sb-S(1) и C(21)-Sb-C(41) равны 176.23° и 121.90°, соответственно. Значения этих углов определяют т = 0.9055, что свидетельствует о формировании сурьмой ТБП полиэдра, искаженного в направлении ТП (вклад ТП компоненты относительно невелик и составляет лишь 9.45%).

В соединении VI, $[Sb(C_6H_5)_4{S_2P(OC_3H_7)_2}]$ (рис. 8) сурьма образует связи с атомами углерода 4 фенильных групп и обоими атомами серы Dtph лиганда, определяя шестерную координацию сурьмы и искаженно октаэдрическую молекулярную структуру. Таким образом, в противоположность комплексу VII, *O,O*'-дипропилдитиофосфатный лиганд в молекуле VI проявляет бидентатный способ координации. В состав экваториальной плоскости искаженного октаэдра, наряду с металлом, входят три наиболее прочно связанные C₆H₅- группы: Sb–C(11, 21, 41) (2.123 – 2.128 Å) и относительно слабо связанный атом серы Sb-S(2) 3.5571 Å. Четвертая, менее прочно связанная фенильная группа Sb–C(31) 2.149 Å и второй атом серы Sb-S(1)

СОЕДИНЕНИЕ	³¹ P		
	δ _{iso} , м.д.	δ _{aniso} , м.д.*	η*
VI. $[Sb(C_6H_5)_4 \{S_2P(OC_3H_7)_2\}]$	107.6	-84.1 ± 0.4	0.98 ± 0.01
VII. $[Sb(C_6H_5)_4 \{S_2P(O-i-C_4H_9)_2\}]$	106.8	-117.0 ± 0.7	0.12 ± 0.03
VIII. $[Sb(C_6H_5)_4 \{S_2P(O-s-C_4H_9)_2\}]$	105.5	-107.3 ± 0.9	0.38 ± 0.02
IX. $[Sb(C_6H_5)_4 \{S_2P(O-c-C_6H_{11})_2\}]$	99.2	80.5 ± 0.2	0.65 ± 0.01
X. $[Sb(C_6H_5)_4 \{S_2P(O-i-C_3H_7)_2\}]$	101.4 99.2	-105.5 ± 0.3 -101.7 ± 0.7	0.20 ± 0.01 0.37 ± 0.01
XI. $[Sb(C_6H_5)_4{S_2P(O-i-C_3H_7)_2}]$ - $\frac{1}{2}C_6H_6$	103.4	-120.2 ± 0.4	0.16 ± 0.01
VIa. K{S ₂ P(OC ₃ H ₇) ₂ } [1]	114.7 114.5 (1:1)	-106 ± 3 -109 ± 4	0.1 ± 0.1 0.23 ± 0.14
VIIa. K{S ₂ P(O- <i>i</i> -C ₄ H ₉) ₂ } [1]	110.9	-123.0 ± 2.0	0.0 ± 0.1
VIIIa. K $\{S_2P(O-s-C_4H_9)_2\}$ [1]	114.8 113.8 (1:1)	-112.4 ± 1.7 -114.0 ± 1.0	0.33 ± 0.04 0.28 ± 0.03
IXa. K{S ₂ P(O- c -C ₆ H ₁₁) ₂ } [1]	109.3 105.0 (1:1)	-110.6 ± 1.5 -109.1 ± 1.7	0.14 ± 0.10 0.21 ± 0.06
Xa. K{S ₂ P(O- <i>i</i> -C ₃ H ₇) ₂ } [1]	111.7 103.8 (1:1)	-104.7 ± 1.3 -116.7 ± 1.1	0.32 ± 0.03 0.07 ± 0.07

Таблица 1 – Данные MAS ЯМР ³¹Р для *О,О'*-диалкилдитиофосфатных комплексов тетрафенилсурьмы(V) VI – XI

* $\delta_{aniso} = \delta_{zz}$ - $\delta_{iso}; \, \eta = (\delta_{yy}$ - $\delta_{xx})/(\delta_{zz}$ - $\delta_{iso}).$

3.0060 Å занимают аксиальные положения. Атомы S(1) и C(31) образуют с металлом угол S-Sb-C 172.27°, что заметно отклоняется от 180° (значение аксиального угла в правильном октаэдре):

Рис. 8. Молекулярная структура [Sb(C_6H_5)₄{S₂P(OC₃H₇)₂}].

Бидентатный способ координации O, O'-дипропилдитиофосфатного лиганда ведет к образованию четырехчленного хелатного металлоцикла [SbS₂P]. Цикл характеризуется практически плоскостной геометрией, что подтверждается значениями торсионных углов P-S-S-Sb и S-Sb P-S близкими к 180° (178.2° и 178.3°, соответственно). Dtph группа проявляет выраженно анизобидентатную координацию: один из атомов серы образует более прочную связь – S(1)-Sb 3.0060 Å, тогда как второй относительно слабо связан комплексообразователем – S(2)-Sb 3.5571 Å.

Таким образом, принципиально различные способы координации O, O'-дипропилдитиофосфатного и O, O'-ди-*изо*-бутилдитиофосфатного лигандов (то есть, *S*,*S'*-бидентатно хелатный и *S*-монодентатный, соответственно) лежат в основе всех главных структурных различий между химически родственными комплексами VI и VII, [Sb(C₆H₅)₄{S₂P(OR)₂}].

MAS ЯМР ³¹Р спектры комплексов VIII и IX (рис. 9) соотносятся также как и обсуждавшиеся выше спектры VI и VII:

Рис. 9. Спектры MAS ЯМР ³¹Р комплексов общего состава $[Sb(C_6H_5)_4{S_2P(OR)_2}]: a, a') R = s-C_4H_9, 6, 6') R = cyclo-C_6H_{11}.$ Частоты вращения образцов: a) 2000, a') 4500, б) 1000, б') 3000 Гц.

Так для VIII (рис. 9 а, а') MAS спектры ближе к случаю аксиальной симметрии ($\delta_{zz} < \delta_{yy} \approx \delta_{xx}$), тогда как для IX (рис. 9 б, б') они отражают преимущественно ромбический характер тензора хим.сдвига ³¹P ($\delta_{zz} > \delta_{yy} > \delta_{xx}$). Отмеченные признаки и параметры анизотропии хим.сдвигов ³¹P, рассчитанные для соединений VIII и IX, (табл. 1) позволяют предположить для этих комплексов (аналогично VII и VI) S-монодентатную и S,S'-бидентатную координацию Dtph лигандов с образованием тригонально-бипирамиданой и октаэдрической молекулярных структур.

Для проверки этих выводов строение $[Sb(C_6H_5)_4\{S_2P(O-s-C_4H_9)_2\}]$ (VIII) было установлено по данным РСА. (Монокристаллы IX пригодные для РСА получить не удалось.) В структуре VIII (рис. 10) сурьма координирует 4 циклические группы C_6H_5- и S-монодентатный *O*,*O*'-ди-*втор*бутилдитиофосфатный лиганд (при значении угла SPS 118.23°):

Полиэдр сурьмы [SbC₄S] может быть аппроксимирован искаженной ТБП, в экваториальной плоскости которой металл образует три наиболее прочные связи с циклическими группами C₆H₅-: Sb-C(21) 2.096 Å,

19

Рис. 10. Молекулярная структура [Sb(C₆H₅)₄{S₂P(O-s-C₄H₉)₂}].

Sb–C(31) 2.101 Å и Sb–C(41) 2.101 Å. Аксиальные положения занимают менее прочно связанный фрагмент C₆H₅– и S-монодентатно координированная Dtph группа: Sb–C(11) 2.134 Å и Sb–S(1) 3.0833 Å. Валентные углы CSbC в экваториальной плоскости отклоняются от 120°: C(21)SbC(31) 117.49°, C(21)SbC(41) 115.36°, C(31)SbC(41) 119.52°, так же как и аксиальный угол от 180°: S(1)SbC(11) 169.34°. Значения этих углов были использованы для расчета параметра $\tau = (\alpha - \beta)/60$, который характеризует геометрию полиэдра сурьмы количественно. Поскольку для комплекса VIII угол α – C(11)SbS(1) равен 169.54°, а β – C(31)SbC(41) 119.51°, τ = 0.834. Это соответствует преимущественному вкладу ТБП-составляющей в геометрию полиэдра сурьмы с примесью 16.6% ТП.

Длина связей P–S существенно различается: 1.991 Å – P–S(1) и 1.946 Å – P–S(2). Одна из них близка к идеальному значению двойной связи (1.94 Å), тогда как вторая занимает промежуточное положение между двойной и ординарной (2.14 Å). Для структурно разупорядоченных атомов C(1)–C(4) и C(8) характерны высокие тепловые параметры, что связано с присутствием в составе лиганда двух хиральных центров (асим-

20

метрические атомы углерода –ОСН– групп). Исходный лиганд не является стереоспецифическим и представляет собой, в соответствии с нормальным статистическим распределением *l*- и *d*- групп, смесь трех оптических изомеров: *ld* (50 %), *ll* (25 %) и *dd* (25 %). Следовательно, комплекс I также существует в трех изомерных формах. Одновременное присутствие этих близких в структурном отношении форм и является причиной отмеченного эффекта, а также наблюдаемого уширения сигналов ¹³С и ³¹Р в экспериментальных MAS ЯМР спектрах (рис. 9 a, a').

Взаимодействие тетрафенилсурьмы(V) с ди-изо-пропилдитиофосфатным лигандом позволяет, наряду с комплексом X, $[Sb(C_6H_5)_4 \{S_2P(O-i C_{3}H_{7}$], получить и его сольватированную форму [Sb($C_{6}H_{5}$)₄{S₂P(O-*i*- $C_{3}H_{7}_{2}$]-½ $C_{6}H_{6}$ (**XI**). В ЯМР ¹³С спектре присутствует дополнительный резонансный сигнал (δ = 129.3 м.д.) =CH- групп сольватных молекул бензола. В центре тяжести MAS ЯМР ³¹Р спектра XI (рис. 11a, a') отмечается три резонансных сигнала, характеризующихся изотропными хим. сдвигами (табл. 1). Важно отметить примерно одинаковую форму и направленность полных MAS ЯМР ³¹Р спектров трех обсуждаемых структурных состояний Dtph лигандов, тензоры хим.сдвига ³¹Р которых близки к аксиально-симметричным (для случая $\delta_{zz} < \delta_{vv} \approx \delta_{xx}$), отражая одинаковый (как и для комплексов VII и VIII), S-монодентатный способ их координации. При установлении их природы важно отметить, что проведение MAS ЯМР экспериментов обычно сопровождается частичной десорбцией слабо связанных внешнесферных сольватных молекул за счет разогрева образца и накоплением несольватированных форм соединений. Для проверки этого предположения был исследован образец Х (осажденный из водной фазы), спектр MAS ЯМР ³¹Р которого (рис. 11б, б') отражает присутствие двух резонансных сигналов - с меньшими хим. сдвигами. Отсюда ясно, что собственно сольватированной форме XI отвечает сигнал с

 $\delta = 103.4$ м.д., тогда как два другие ($\delta = 101.4$ и 99.2 м. д.) обусловлены несольватированной формой (или формами). Выполненными расчетами установлено, что δ_{aniso} всех трех резонансных сигналов имеют отрицательный знак, а значения η лежат в диапазоне 0.16–0.37 (табл. 1), что отвечает представлению о S-монодентатной координации Dtph лигандов в комплексах X и XI. Для проверки этого заключения структура сольватированной формы XI была разрешена по данным PCA.

Рис. 11. Спектры MAS ЯМР ³¹Р комплексов состава: [Sb(C₆H₅)₄{S₂P(O-*i*-C₃H₇)₂}]•¹/₂C₆H₆ (a, a') и [Sb(C₆H₅)₄{S₂P(O-*i*-C₃H₇)₂}] (б, б'). Частоты вращения: a) 2000, a') 3000, б) 2300, б') 3800 Гц.

В сольватированной форме XI, $[Sb(C_6H_5)_4[S_2P(O-i-C_3H_7)_2]]$ •//2C₆H₆ металл присоединяет четыре фенильных цикла и ди-*изо*-пропилдитиофосфатный лиганд через один из атомов серы (рис. 12). Таким образом, как и ожидалось из данных MAS ЯМР ³¹P, для Dtph группы установлена монодентатная координация (значение угла SPS 117.95°). Для сольватной молекулы бензола, находящейся во внешней сфере, характерно Альтернирование связей C–C: 1.345, 1.382 и 1.389 Å. Полиэдр сурьмы [SbC₄S] может быть аппроксимирован искаженной ТБП, в экваториальной плоскости которой металл образует три наиболее прочные связи с циклическими группами C₆H₅– : Sb–C(21) 2.1158 Å, Sb–C(31) 2.1148 Å и Sb–C(41) 2.1059 Å. Аксиальные положения занимают слабо связанный фрагмент C₆H₅– и S-монодентатно координированная Dtph группа: Sb–C(11) 2.147 Å и Sb–S(1) 2.9488 Å. Валентные углы CSbC в экваториальной плоскости ТБП отклоняются от 120°: C(21)SbC(31) 125.66°, C(21)SbC(41) 115.90°, C(31)SbC(41) 113.34°, так же как и аксиальный угол от 180°: S(1)SbC(11) 176.38°. Рассчитанный параметр τ = 0.854, что соответствует 85.4% вкладу ТБП в геометрию полиэдра сурьмы с примесью 14.6% ТП-составляющей. Атом фосфора находится в тетраэдрическом окружении атомов серы и кислорода [S₂O₂]. Длина связей P–S существенно различна: 1.9503 Å – P–S(2) и 2.0041 Å – P–S(1). Первая близка к идеальной двойной связи P=S (1.94 Å), тогда как вторая промежуточна между двойной и ординарной (2.14 Å) связями фосфор–сера.

Рис. 12. Молекулярная структура [Sb(C₆H₅)₄{S₂P(O-*i*-C₃H₇)₂}]•¹/₂C₆H₆.

Таким образом, на примере комплексов VI–XI была установлена принципиальная возможность как S-монодентатной, так и S,S'-бидентатной координации ионных Dtph pearentroв-собирателей в комплексах тетрафенилсурьмы(V).

Значения длин связей Sb–S в диалкилдитиофосфатных комплексах

тетрафенилсурьмы(V) VI (2.9092 Å), VII (3.0833 Å) и XI (2.9488 Å) довольно близки. Более прочные связи Sb–S (2.717–2.854 Å) характерны для диалкилдитиокарбаматных комплексов тетрафенилсурьмы(V). Вероятно, именно это обстоятельство лежит в основе принципиально различного способа координации Dtph (преимущественно S-монодентатный) и Dtc групп (S,S'-бидентатно-хелатный).

Основные выводы

1. Синтезированы и по данным MAS ЯМР (13 C, 15 N) спектроскопии детально охарактеризованы комплексы тетрафенилсурьмы и тетратолилсурьмы с *N*,*N*-диалкилзамещенными дитиокарбаматными лигандами общего состава [Sb(Ar)₄(S₂CNR₂)], где Ar = C₆H₅: R = CH₃ (соединение I), C₂H₅ (II), C₃H₇ (III), R₂ = (CH₂)₆ (IV); *p*-CH₃-C₆H₄: R = C₃H₇ (V).

2. Все полученные комплексы имеют октаэдрическое строение с *S*,*S*'-бидентатной координацией дитиокарбаматных лигандов в экваториальной плоскости.

3. Комплекс состава [Sb(C₆H₅)₄{S₂CN(CH₂)₆}] существует в двух молекулярных формах, соотносящихся как конформационные изомеры. На основе представлений о различном вкладе двоесвязанности в формально ординарную связь =N-C(S)S- проведено отнесение резонансных сигналов ¹³C и ¹⁵N к структурным положениям соответствующих атомов в разрешенных структурах конформеров [Sb(C₆H₅)₄{S₂CN(CH₂)₆}].

4. Препаративно выделены и по данным MAS ЯМР (13 C, 31 P) спектроскопии охарактеризованы новые кристаллические *O*, *O*'-диалкилдитиофосфатные комплексы тетрафенилсурьмы(V) общего состава [Sb(C₆H₅)₄{S₂P(OR)₂}] (VI - R = C₃H₇, VII – R = *i*-C₄H₉, VIII – R = *s*-C₄H₉, IX – R = *c*-C₆H₁₁, X – R = *i*-C₃H₇), а также сольватированная форма XI – [Sb(C₆H₅)₄{S₂P(O-*i*-C₃H₇)₂]-¹/₂C₆H₆.

5. По данным РСА в структуре комплексов VI – XI установлены принципиально различные способы координации *O*,*O*'-дипропилдитио-

фосфатного и *O*,*O*'-ди-*изо*-бутил-, *O*,*O*'-ди-*втор*-бутил-, *O*,*O*'-ди-*изо*пропилдитиофосфатных лигандов к комплексообразователю: *S*,*S*'-бидентатный и *S*-монодентатный, соответственно. Выявленное отличие в координации лигандов обусловило формирование искаженно-октаэдрических – для [Sb(C₆H₅)₄{S₂P(OR)₂}] (R = C₃H₇, *c*-C₆H₁₁), и тригонально-бипирамидальных молекулярных структур – для [Sb(C₆H₅)₄{S₂P(OR)₂}] (R = *i*-C₄H₉, *s*-C₄H₉, *i*-C₃H₇) и [Sb(C₆H₅)₄{S₂P(O-*i*-C₃H₇)₂]·¹/₂C₆H₆.

6. Полные MAS ЯМР спектры ³¹Р были использованы для построения диаграмм χ^2 -статистики и расчета параметров анизотропии хим. сдвига ³¹Р (η и δ_{aniso}). Установлено, что тензоры хим.сдвига *S*,*S*'-бидентатно координированных *O*,*O*'-дипропил- и *O*,*O*'-ди-*цикло*-гексилдитио-фосфатных лигандов в структуре характеризуются симметрией близкой к ромбической: VI – $\eta = 0.98$, $\delta_{aniso} = -84.1$ м.д. и IX – $\eta = 0.65$, $\delta_{aniso} = 80.5$ м.д. Тогда как для *S*-монодентатных *O*,*O*'-ди-*изо*-бутил-, *O*,*O*'-ди-*вор*-бутил- и *O*,*O*'-ди-*изо*-пропилдитиофосфатных лигандов тензоры хим. сдвига ³¹Р преимущественно аксиально-симметричные (для случая δ_{xx} , $\delta_{yy} > \delta_{zz}$): $\eta = 0.12 - 0.38$, $\delta_{aniso} = -101.7 - (-120.2)$ м.д.

Список статей по теме диссертации

1. Иванов А.В., Пакусина А.П., Иванов М.А., Шарутин В.В., Герасименко А.В., Анцуткин О.Н, Гребнер Г., Форшлинг В. Синтез, структурное и MAS ЯМР (¹³C, ¹⁵N) спектральное исследование комплексов тетрафенилсурьмы с N,N-диалкилдитиокарбаматными лигандами: проявление конформационной изомерии // *Докл. Акад. наук*. – 2005. – Т. 401, № 5. – С. 643-647.

2. Шарутин В.В., Иванов М.А., Герасименко А.В., Иванов А.В., Пакусина А.П., Анцуткин О.Н., Форшлинг В., Гребнер Г. Синтез, структурное и MAS ЯМР (¹³C, ¹⁵N) спектральное исследование строения комплексов тетрафенил- и тетратолилсурьмы с N,N-диалкилдитиокарбамат-

ными лигандами // *Коорд. химия.* – 2006. – Т. 32, № 6. – С. 403-412.

3. Ivanov M.A., Antzutkin O.N., Sharutin V.V., Ivanov A.V., Pakusina A.P., Pushilin M.A., Forsling W. Preparation and structural organization of heteroleptic tetraphenylantimony(V) complexes comprising unidentately and bidentately coordinated O,O –dialkyldithiophosphate groups: Multinuclear (¹³C, ³¹P) CP/MAS NMR and single-crystal X-ray diffraction studies // *Inorg. Chim. Acta.* – 2007. – Vol. 360, № 9. – PP. 2897-2904.

4. Иванов М.А., Шарутин В.В., Иванов А.В., Герасименко А.В., Анцуткин О.Н. Синтез, структура и MAS ЯМР (¹³C, ³¹P) О,О'-диалкилдитиофосфатных комплексов тетрафенилсурьмы(V), [Sb(C₆H₅)₄{S₂P(OR)₂}] (R = *s*-C₄H₉, *cyclo*-C₆H₁₁) // *Коорд. химия.* – 2008. – Т. 34, № 7. – С. 533-542.

Литературные ссылки

1. Larsson A.-C., Ivanov A.V., Forsling W. et al. // J. Amer. Chem. Soc. – 2005. – Vol. 127, № 7. – P. 2218-2230.