На правах рукописи

ПОЛЯНЦЕВ МИХАИЛ МИХАЙЛОВИЧ

ИОННАЯ ПОДВИЖНОСТЬ И ПРОВОДИМОСТЬ В ТВЕРДЫХ РАСТВОРАХ В СИСТЕМАХ НА ОСНОВЕ ТРИФТОРИДОВ СУРЬМЫ И ВИСМУТА

Специальность 02.00.04 – физическая химия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Владивосток 2017

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН)

Научный руководитель	доктор химических наук Кавун Валерий Яковлевич (ФГБУН Институт химии Дальневосточного отделения РАН, зав. лабораторией химической радиоспектроскопии)
Официальные оппоненты	доктор физико-математических наук Козлова Светлана Геннадьевна (ФГБУН Институт неорганической химии им. Ак. А.В. Николаева Сибирского отделения РАН, зав. лабораторией физической химии конденсированных сред)
	доктор химических наук, старший научный сотрудник Денисова Татьяна Александровна (ФГБУН Институт химии твердого тела Уральского отделения РАН, ученый секретарь института)
Ведущая организация	Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской

Защита состоится 27 октября 2017 г. в 10⁰⁰ часов на заседании диссертационного совета Д 005.020.01 при Федеральном государственном бюджетном учреждении науки Институте химии Дальневосточного отделения Российской академии наук по адресу: 690022, г. Владивосток, проспект Столетия Владивостока, д. 159.

академии наук (ИХТТМ СО РАН)

С диссертацией можно ознакомиться в научной библиотеке Дальневосточного отделения Российской академии наук и на сайте Института химии ДВО РАН http://www.ich.dvo.ru/

Автореферат разослан ____ 2017 г.

Ученый секретарь диссертационного совета кандидат химических наук

Бровкина О.В.

Актуальность темы. В последние годы в связи с открытием новых твердотельных материалов с высокой ионной подвижностью усилился интерес к поиску неорганических веществ с высокими электрофизическими свойствами, на основе которых могут быть разработаны новые функциональные материалы. Учитывая высокую электропроводность, такие материалы имеют хорошую перспективу практической реализации при разработке твердых электролитов, твердотельных электрохимических устройств и др.

Диффузионная подвижность в кристаллических и аморфных соединениях является одним из проявлений теплового движения атомов, молекул и молекулярных ионов в конденсированных средах. Актуальность исследований диффузионной подвижности обусловлена универсальностью данного явления, а также тем фактом, что эффекты диффузионной подвижности могут в значительной степени влиять на функциональные свойства материалов. Фундаментальный интерес к процессам диффузии в ионных кристаллах связан с возможностью получения суперионных проводников (твердых электролитов). Переход от жидких и полимерных систем к твердым электролитам позволяет повысить прочность материала, расширить диапазон рабочих температур и обеспечить униполярный характер проводимости. Твердотельные электрохимические системы совместимы с базовыми элементами микропроцессорной техники и могут быть встроены в гетероструктуры, что существенно расширяет области практического использования электролитов в индустрии наносистем и наноматериалов. Процесс поиска и получения новых материалов с высокой ионной проводимостью, оптимизации их транспортных характеристик требует всестороннего анализа факторов, обуславливающих проявление этих свойств в твердом теле.

Большой интерес представляют ионные фторидные соединения, характеризуемые высокой диффузионной подвижностью и как следствие – высокой анион-

Список используемых сокращений: ДСК – дифференциально-сканирующая калориметрия; КМ – компьютерное моделирование; РСА – рентгеноструктурный анализ; РФА – рентгенофазовый анализ; ТР – твердый раствор; ФП – фазовый переход; ХС – химический сдвиг сигнала ЯМР (м.д.); ЯМР – ядерный магнитный резонанс; MAS – magic-angle spinning (вращение образца под магическим углом).

ной проводимостью. Ионные проводники с высокой проводимостью по ионам фтора являются перспективными материалами для различных электрохимических устройств. Ионные фториды образуют большой класс соединений с аномально высокой анионной проводимостью и являются удобными модельными объектами для изучения механизмов диффузионной подвижности и ионного транспорта.

Известно, что наиболее высокими значениями ионной проводимости обладают фториды тяжелых металлов, такие как LaF₃, CeF₃, PbF₂, SnF₂, BiF₃. Твердые электролиты на основе BiF₃, такие как MBiF₄ (M = K, Rb, Tl) и Pb_{1-x}Bi_xF_{2+x} обладают ионной проводимостью порядка 10^{-2} Cм/см при 500 K. В литературе имеются данные о проводимости во флюоритовых твердых растворах (TP) в системах MF–BiF₃ (M = Na, K, Rb), PbF₂–BiF₃. Электропроводность TP в таких системах высока и достигает значений порядка 10^{-5} – 10^{-3} См/см при 373 K. Однако данные по ионной подвижности и транспортным свойствам в TP, содержащих катионы Bi³⁺ в тройных системах MeF_n–BiF₃–MF (M – катион щелочного металла и др., n = 2, 3, 4), практически отсутствуют.

К числу соединений с высокой ионной проводимостью можно отнести и ряд фторидов сурьмы(III) с одновалентными внешнесферными катионами. В частности, соединение KSbF₄ по разным данным в области температур 450–480 К переходит в суперионную β -фазу с проводимостью порядка 10^{-2} См/см, причем высокотемпературная фаза остается стабильной и после охлаждения. Несомненный интерес вызывают исследования ионной подвижности (проводимости) в относительно новом классе комплексных фтороантимонатов(III) с гетероатомными катионами, в которых по предварительным данным ЯМР и импедансной спектроскопии наблюдается высокая ионная подвижность и проводимость.

Таким образом, перспективным направлением в исследовании фторидных систем является поиск новых составов комплексных фторсодержащих соединений (TP) сурьмы(III) и висмута(III) с высокой проводимостью. Выбор объектов исследования обусловлен также тем, что в Институте химии ДВО РАН, в лаборатории химии редких металлов и в лаборатории оптических материалов, прово-

дятся систематические работы по синтезу фторосодержащих соединений сурьмы(III) и висмута(III).

Фундаментальные исследования и разработки в области твердотельных электрохимических систем полностью соответствуют современным тенденциям развития науки и техники и определяют актуальность настоящей работы. Научная новизна настоящей работы состоит в дальнейшем развитии научного направления физической химии, связанного с вопросами экспериментального исследования локальной (диффузионной) подвижности и электрофизических свойств объектов разной природы, на основе которых могут быть получены новые функциональные материалы.

Цель работы:

– установление взаимосвязи между характером ионных движений, фазовыми переходами (ФП) и ионной проводимостью в новых комплексных соединениях трехвалентной сурьмы с гетероатомной катионной подрешеткой и твердых растворах, полученных в системах на основе трифторида висмута, и поиск среди них соединений перспективных для получения новых функциональных материалов;

Для выполнения поставленной цели было необходимо решить следующие задачи:

 определить виды ионной подвижности в комплексных фтороантимонатах(III) с гомо-, гетероатомной катионной подрешеткой и висмутфторсодержащих твердых растворах на основе анализа данных ЯМР с целью выявления среди них потенциальных объектов с высокой ионной проводимостью;

 установить факторы, определяющие характер и активационные параметры ионных движений веществ в указанных выше системах;

 измерить электропроводность отобранных образцов для выяснения их принадлежности к классу суперионных проводников и возможности их практического использования в электрохимических устройствах.

Научная новизна работы:

открыт новый класс суперионных проводников - фтороантимонатов(III)
с гетероатомной катионной подрешеткой;

– впервые изучены характер ионной подвижности и ионный транспорт в новых комплексных соединениях сурьмы(III) $K_{0.7}M_{0.3}SbF_4$ (M = Rb, NH₄), $K_{0.4}Rb_{0.6}Sb_2F_7$ и установлено, что в результате фазовых переходов образуются суперионные фазы с проводимостью выше $10^{-4} - 10^{-2}$ См/см;

– впервые установлено, что новые твердые растворы в системах KF-MeF₂-BiF₃ (Me = Ba, Cd) и MF–PbF₂–BiF (M = K, Rb) обладают удельной проводимостью $\sim 10^{-3} - 10^{-2}$ См/см при 450 K, что свидетельствует об их принадлежности к классу суперионных проводников;

– впервые изучена ионная подвижность в литиевой и фторидной подрешетках новых координационных соединений сурьмы(III) LiSbF₄ и LiSb₂F₇, а также проведен сравнительный анализ влияния катиона M^+ на характер ионных движений в рядах однотипных комплексов MSbF₄ и MSb₂F₇ (M = Li, Na, K, Rb, Cs, NH₄).

Практическая значимость работы:

 изученные в работе соединения и твердые растворы с высокой проводимостью могут быть использованы в качестве основы для получения твердых электролитов, применяемых в твердотельных электрохимических устройствах;

 выявленные закономерности, определяющие характер ионных движений и величину ионной проводимости в рассмотренных соединениях и твердых растворах, могут применяться для поиска суперионных проводников в других системах и соединениях;

полученные данные ЯМР могут быть использованы в качестве справочного материала при исследовании разнообразных кристаллических и аморфных фторсодержащих фаз;

На защиту выносятся:

 результаты анализа спектров ЯМР новых комплексных фтороантимонатов(III) с гетероатомной катионной подрешеткой и твердых растворов в системах на основе трифторида висмута для выявления у них высокой ионной подвижно-

сти и возможного применения их в качестве основы для получения функциональных материалов;

 установленные зависимости характера ионной подвижности и транспортных свойств в исследуемых комплексных фтороантимонатах(III) от состава катионной подрешетки;

обоснование роли фазовых переходов в исследуемых комплексных фтороантимонатах(III) при переходе в суперионное состояние с образованием
β-модификаций с диффузионной подвижностью ионов фтора (аммония) и высокой ионной проводимостью;

– закономерности влияния состава твердых растворов в системах $KF-MeF_2-BiF_3$ (Me = Ba, Cd), $KF-PbF_2-BiF_3$ (M = K, Rb) и $KF-ZrF_4-BiF_3$ на характер ионных движений во фторидной подрешетке и ионную проводимость.

Достоверность полученных результатов обеспечена сопоставлением экспериментальных данных, полученных при помощи взаимодополняющих основных физико-химических методов исследования: ЯМР и импедансной спектроскопии с учетом информации, полученной при использовании РФА, РСА и ДСК. Температурные границы существования фаз контролировались методами ДСК и ЯМР. При обработке полученных данных использовались методы математической статистики, и учитывалась повторяемость результатов исследований.

Соответствие диссертации паспорту научной специальности. Диссертация соответствует паспорту специальности 02.00.04 – физическая химия в следующих пунктах: 1. Экспериментальное определение и расчет параметров строения молекул и пространственной структуры веществ. 2. Экспериментальное определение термодинамических свойств веществ, расчет термодинамических функций простых и сложных систем, в том числе на основе методов статистической термодинамики, изучение термодинамики фазовых превращений и фазовых переходов.

Апробация работы. Основные результаты работы представлены и обсуждены на: 17th European Symposium on Fluorine Chemistry, Paris, France, 2013; The International Symposium on Inorganic Fluorides: Chemistry and Technology, ISIF –

2014, Tomsk, Russia; 11-ой Зимней молодежной школе-конференции «Магнитный резонанс и его приложения», Санкт-Петербург, Россия, 2014; XXVI Международной Чугаевской конференции по координационной химии, Казань, Россия, 2014; XX Менделеевском съезде по общей и прикладной химии, Екатеринбург, Россия, 2016.

По материалам диссертации опубликовано 17 работ, в числе которых 5 статей в центральных отечественных журналах и 6 статей в зарубежных журналах, рекомендованных ВАК, 6 тезисов докладов на российских и международных конференциях и симпозиумах.

Связь работы с научными программами. Работа выполнена в соответствии с планами научно-исследовательских работ РАН по теме «Направленный синтез и исследование строения и свойств новых веществ, материалов и покрытий (включая наноразмерные) для морских технологий и техники и различного функционального назначения» № 01.2014.59476. Работа поддержана грантами РФФИ: «Экспериментальное и теоретическое исследование природы и особенностей механизма ионной и суперионной проводимости в кристаллических фторидах элементов III–VI групп» № 14–03–00041, «Кристаллические и аморфные фториды в системах с неполновалентными р-катионами как основа функциональных материалов с высокой ионной проводимостью» № 11–03–00229.

Личный вклад автора состоял в планировании и проведении экспериментов ЯМР ¹H, ⁷Li, ¹⁹F, расчетов и систематизации данных ЯМР в виде таблиц и графического материала. Автором были проанализированы литературные данные по теме диссертации, обработаны и обобщены полученные результаты, подготовлены статьи, материалы конференций.

Структура и объём диссертации: Диссертация состоит из введения, 4 глав, основных результатов и выводов, списка цитируемой литературы. Работа изложена на 144 страницах, включает 62 рисунка, 11 таблиц и имеет список цитируемой литературы из 169 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении проведено обоснование выбора темы диссертации, определены объекты исследования, показана научная актуальность, новизна, практическая значимость результатов работы.

Первая глава представляет собой литературный обзор. Рассмотрены особенности строения комплексных фтороантимонатов(III) с гомо- и гетероатомными внешнесферными катионами. Показано, что для данного класса соединений характерен широкий ряд реализуемых структур. Наиболее перспективными с точки зрения получения материалов с высокой ионной подвижностью (проводимостью) являются соединения $MSbF_4$, MSb_2F_7 и $M_3Sb_4F_{15}$ (M – одновалентный катион). Известно, что замещение части катионов в соединении на другой катион во многих случаях приводит к понижению энергии активации ионных движений по сравнению с таковой в комплексах с однородными катионами. В ряде случаев высокотемпературные фазы стабилизируются при охлаждении, что приводит к существенному возрастанию проводимости при комнатной температуре. Поэтому представляет интерес исследование ионной подвижности и проводимости в соединениях, изоморфных перечисленным выше, содержащих катионы различной природы.

Этот же подход применяется для модификации твердых электролитов на основе KBiF₄, имеющих проводимость порядка $10^{-3} \div 10^{-2}$ См/см при 420 K, а также на основе других тетрафторовисмутатов(III). ТР на основе MBiF₄ имеют достаточно широкие области гомогенности. Допирование позволяет стабилизировать высокотемпературную флюоритовую модификацию соединения, менять концентрацию примесных дефектов и объем элементарной ячейки. В данном случае перспективным является исследование двойных и тройных систем с целью раздельной оптимизации стабильности переохлажденной фазы и характеристик ионного транспорта в ней.

Также в первой главе приведены основные положения ЯМР твердого тела, используемые при анализе строения и диффузионных свойств неорганических соединений.

Во второй главе описаны методики регистрации и обработки спектров ЯМР, данных импедансной спектроскопии и других методов, использованное оборудование и условия эксперимента. Также приведено описание методик синтеза исследуемых соединений.

Третья глава посвящена изучению ионной подвижности и проводимости в комплексных соединениях на основе трифторида сурьмы.

LiSbF₄. Кристаллы LiSbF₄ (**I**) относятся к кубической сингонии. Основной структурной единицей в LiSbF₄ выступают группы SbF₃E, связанные между собой тройными фторидными мостиками в трехмерную структуру, и катионы Li⁺.

Координационным полиэдром атома лития выступает тетраэдр LiF₄.

В спектрах ЯМР ⁷Li I (рисунок 1) выше 370 К наблюдается появление узкой компоненты, принадлежащей высокомобильным ионам лития, составляющей при 420 К около 40% общей площади спектра. Спектры ЯМР ¹⁹F I (рисунок 1) в интервале температур 150– 450 К

Рисунок 1 – Спектры ЯМР 7 Li, 19 F LiSbF₄ при разных температурах

представлены сравнительно широкой асимметричной линией, форма которой практически не меняется в этом диапазоне температур. Ниже температуры 320 К ионных движений во фторидной подрешетке с частотами выше 10^4 Гц не зарегистрировано (жесткая решетка). С повышением температуры наблюдается уменьшение ширины спектра (с 45.8 кГц при 320 К до 35.7 кГц при 450 К), которое может быть связано с появлением диффузионных процессов в литиевой подрешетке за счет усреднения взаимодействий F – Li. Выше 410 К в спектре ЯМР появляется «узкая» линия небольшой интенсивности (2.5%) с химическим сдвигом (XC) 84 м.д. (рисунок 1). Можно утверждать, что ионная подвижность во фторидной подрешетке соединения LiSbF₄ в исследованном интервале температур (150 – 470 К) практически отсутствует. Отметим, что эндоэффектов на кривой

ДСК в области температур 300 – 520 К не обнаружено. Температура плавления образца LiSbF₄ составила 528 К.

LiSb₂F₇ (II). Соединение LiSb₂F₇ относится к ромбической сингонии, пр.гр. Рпта. Структура образована катионами Li⁺ и димерными комплексными анионами [Sb₂F₇]⁻, построенными из двух тригональных бипирамид SbF₄E (атомы сурьмы в них занимают эквивалентные положения), связанных между собой общей

аксиальной вершиной – мостиковым атомом фтора.

В исследованном интервале температур движения ионов Li в **II** по данным ЯМР отсутствуют. Некоторое сужение спектра ЯМР ⁷Li (рисунок 2) выше 370 К вызвано частичным усреднением дипольдипольных взаимодействий F-Li

Рисунок 2 – Спектры ЯМР 7 Li, 19 F LiSb₂F₇

из-за локальной подвижности, которая появляется выше 290 К во фторидной подрешетке. Спектр ЯМР ¹⁹F **II** при 320 К моделируется тремя линиями и на долю компоненты 1, отвечающей мобильным ионам фтора, приходится ~8% от общей площади спектра. До температуры ФП (427 К) число высокомобильных ионов фтора остается неизменным. При этом линия 1 в спектре ЯМР сужается до ~ 2.4 кГц при 420 К, что говорит о наличии диффузии части фторид-ионов.

 $K_{0.7}M_{0.3}SbF_4$ (M = Rb, NH₄). Спектры ЯМР ¹⁹F соединений $K_{0.7}Rb_{0.3}SbF_4$ (III) и $K_{0.7}(NH_4)_{0.3}SbF_4$ (IV) при температурах 150 – 300 К имеют асимметричную форму (рисунок 3), обусловленную структурной неэквивалентностью ядер фтора в кристаллической решетке и анизотропией XC. Спектры практически не меняются в этой области температур и отвечают «жесткой» решетке (в терминах ЯМР). Наличие структурно неэквивалентных позиций фтора подтверждается данными MAS ЯМР ¹⁹F: в спектре III при 300 К регистрируются две линии при 135 и 95 м.д. (рисунок 4), а для IV – при 111 и 83 м.д. Локальные движения во фторидной подрешетке возникают в области температур 300–360 К. Регистрация

Рисунок 3 – Трансформация спектров ЯМР ¹⁹F, ¹H $K_{0.7}(NH_4)_{0.3}SbF_4$ с температурой. * - сигнал от сорбированных молекул воды

при 370 К отдельной узкой компоненты, относящейся к высокомобильным ионам фтора, наблюдается только для **III**.

Ширина спектра ЯМР ¹⁹F соединений с гетероатомными катионами в области температур 370–450 К уменьшена по сравнению с KSbF₄. При 420 К по данным компьютерного моделирования спектры ЯМР соединений **III**, **IV** и KSbF₄ можно представить широкой и узкой компонентами, причем на долю последней приходится ~ 35, 55 и 30% от общей площади спектра в перечисленных соединениях соответственно. При 490 К в спектрах ЯМР соединений **III**, **IV** и KSbF₄ остается одна компонента с

шириной ≈ 2.4 , 1.3 и 1.8 кГц (S₂ ≤ 0.05 Гс²) и ХС 110, 116 и 104 м.д. Эти данные

свидетельствуют о доминирующей роли трансляционной диффузии ионов фтора в соединениях **III** и **IV**, обуславливающей высокие значения ионной проводимости (выше 10⁻³–10⁻² См/см при 450–500 K).

Спектры ЯМР ¹Н соединения $K_{0.7}(NH_4)_{0.3}SbF_4$ в диапазоне температур 150-300 К представлены одиночной линией с шириной \approx 22.6–20.7 кГц, $S_2(H) \approx 6.4$ -5.0 Гс², (рисунок 3). В области 300–420 К заметное сужение спектра (до 11.2 кГц) связано с частичным усреднением диполь-дипольных взаимодействий F–H вследствие появления локальных движений во фторидной подрешетке. При 450 К спектр становится двух-

Рисунок 4 – Спектры MAS ЯМР ¹⁹F соединений III (а) и IV (b), T=300 K

Рисунок 5 – Температурные зависимости электропроводности образцов KSbF₄ (1, 1'), **IV** (2, 2') и **III** (3, 3'). Кривые 1, 2 и 3 соответствуют первому нагреву, 1', 2' и 3' получены после охлаждения и повторного нагрева

компонентным вследствие перехода части ионов аммония к диффузии, а при 485 К доля высокомобильных ионов аммония достигает 100%.

По данным ДСК для соединений III и IV зафиксированы эндоэффекты с максимумами при 495 и 450 К, отвечающие ФП. Можно предположить, что интенсивные динамические процессы в соединениях связаны с образованием высокотемпературной β' -фазы с высокой подвижностью ионов фтора, сохраняющейся и после охлаждения образца.

 $(NH_4)_{0.4}Rb_{0.6}SbF_4$. Спектры ЯМР ¹⁹F соединения $(NH_4)_{0.4}Rb_{0.6}SbF_4$ (V) при разных температурах приведены на рисунке 6. Асимметричная форма спектров ЯМР ниже 350 K отвечает «жесткой» решетке. Изменения формы и величины S₂ спектра ЯМР, отвечающие локальным движениям во фторидной подрешетке, возникают в области температур 330–350 K. С повышением температуры до 450 K в спектрах ЯМР соединения V остается одна компонента с шириной порядка 5.5 кГц (S₂ ≈ 1.5 Гс²) и XC 104 м.д. (рисунок 6), что свидетельствуют о высокой мобильности фторид-ионов.

Спектры ЯМР ¹Н соединения V в диапазоне температур 150–300 К представлены линиями с шириной $\approx 22.5-20$ кГц, S₂(H) $\approx 5.4-4.4$ Гс². В области 300– 420 К заметное сужение спектра (до 12.5 кГц) связано с частичным усреднением диполь-дипольных взаимодействий F—Н вследствие появления локальных движений во фторидной подрешетке. При этом на кривых ДСК потери веса не зафиксировано, тепловые эффекты в интервале температур 300–450 К – отсутствуют (плавление образца выше 453 К). Несмотря на это, при охлаждении соедине-

Рисунок 6 – Трансформация спектров ЯМР ¹⁹F (NH₄)_{0.4}Rb_{0.6}SbF₄ при вариации температуры

ния V (450 \rightarrow 300 K) в его спектре ЯМР ¹⁹F (рисунок 6) наряду с линией, соответствующей исходной фазе, присутствует компонента, отвечающая высокомобильным ионам фтора.

Соединения $M_x^I M_{1-x}^{II} Sb_2 F_7$. Форма статических спектров ЯМР ¹⁹F при температурах ниже 300-350 К практически одинакова как для стехиометриобразцов (CsSb₂ F_7 (VI), ческих KSb_2F_7 **(VII)**, $NH_4Sb_2F_7$ (VIII)), так и соединений с гетероатомными катионами: Cs_{0.9}K_{0.1}Sb₂F₇ (**IX**) и Cs_{0.4}K_{0.6}Sb₂F₇ (**X**), $Cs_{0.8}(NH_4)_{0.2}Sb_2F_7$ (XI) и $Cs_{0.4}(NH_4)_{0.6}Sb_2F_7$ (XII), K_{0.4}Rb_{0.6}Sb₂F₇ (**XIII**), Cs_{0.4}Rb_{0.6}Sb₂F₇ (**XIV**). Температуры начала локальных и диффузионных движений ионов фтора для соединений со смешанными катионами понижены по сравнению с исходными соединениями VI-VIII. Состояние жесткой решетки сохраняется до 350 К, а в соединениях с аммонием – до 300 К. Форма спектров в переходной области (рисунок 7), положение и ширина спектральной линии

при диффузии фтора также определяются составом соединения. Для **IX-XIV** характерно сохранение после прогрева до 420-450 K и охлаждения до 300 K подвижности во фторидной подрешетке, проявляющейся в спектрах ЯМР ¹⁹F в виде наличия узкой компоненты или в виде общего сужения спектра. По данным ДСК, все соединения имеют ФП, температура которых зависит от состава образца: ~440 K для **IX** и **X**, ~420 K для **XI**, **XII**, **XIV** и 460 K для **XII**. Переход в высокотемпературную модификацию сопровождается резким сужением спектра ЯМР ¹⁹F до 1.3-2.3 кГц ($S_2 = 0.1-1.8 \Gamma c^2$) за исключением **XII** и **XIII**. В этих образцах переходу к высокой трансляционной подвижности ионов фтора соответствует постепенное перераспределение интенсивностей узкой и широкой компонент спектра, завершающееся трансформацией спектра к лоренцевой форме. Движение в аммо-

нийной подсистеме соединений **XI** и **XII** до 390 К представлено изотропными реориентациями тетраэдрических ионов NH_4^+ . Выше 390 К начинается переход ио-

нов аммония от изотропных реориентаций к диффузии ($E_{\rm ЯМР} > 0.62$ эВ). С повышением температуры до 450 К доля высокоподвижных ионов аммония увеличивается до ≈ 60 и 25 %, а ширина узких компонент спектра уменьшается до ≈ 3 и 1.3 кГц для соединений XI и XII соответственно. Ионная проводимость образцов IX-XIV составляет 10^{-4} – 10^{-3} См/см при 430-450 К.

 $CsRb_2Sb_4F_{15}$ и $Cs_3Sb_4F_{15}$. Кристаллическая структура соединения $CsRb_2Sb_4F_{15}$ (**XV**) имеет островной характер. Ее основными структурными элементами являются димерные анионы $[Sb_2F_7]^-$, изолированные анионы

Рисунок 7 – Форма спектров ЯМР 19 F и 1 H $Cs_{0.8}(NH_4)_{0.2}Sb_2F_7$ при разных температурах

 $[SbF_4]^-$ и катионы Cs⁺ и Rb⁺, которые объединяются между собой в каркас ионными связями. Геометрические параметры полиэдров сурьмы соединения **XV** близки к таковым для известного комплекса Cs₃Sb₄F₁₅ (**XVI**). По данным ДСК в области температур 300–470 К соединение (**XV**) не претерпевает ФП. Температура начала плавления образца **XV** - 477 К.

Форма спектров ЯМР ¹⁹F XV и XVI (рисунок 8) при низких температурах обусловлена структурной неэквивалентностью и анизотропией XC. Учитывая форму и ширину спектра ЯМР, можно утверждать, что ниже 200 К ионные движения с частотами выше 10^4 Гц во фторидной подрешетке XV отсутствуют. Для соединения XVI жесткая решетка сохраняется вплоть до 270 К. Выше 200 (280) К начинается активация локальных движений во фторидной подрешетке XV (XIV). В области температур 300 – 400 К спектр ЯМР ¹⁹F соединения CsRb₂Sb₄F₁₅ трансформируется в относительно симметричную линию с XC ≈ 109 м.д., шириной 8 кГц и вторым моментом менее 4 Гс². Анализ параметров спектра ЯМР XV

при 400 К позволяет предположить, что при данной температуре основным видом ионных движений являются реориентации фторсодержащих группировок сурьмы.

При температуре 420 К форму спектров XV и XVI можно представить кривой, характерной для аксиальносимметричного тензора магнитного экранирования (рисунок 9), при этом второй момент спектра составляет менее $0.15 \ \Gamma c^2$. Из-за особенностей структуры рассматриваемых соединений полного усреднения ТМЭ ядер фтора при его диффузии не происходит. Несмотря на более низкую энергию активации ло-

Рисунок 8 – Температурная трансформация спектров ЯМР ¹⁹F соединений $Cs_3Sb_4F_{15}$ (a) и $CsRb_2Sb_4F_{15}$ (б)

кальных ионных движений в XV по сравнению с XVI, значения удельной прово-

Рисунок 9 – Разложение на компоненты спектра ЯМР 19 F соединения $CsRb_2Sb_4F_{15}$ димости σ в первом из соединений оказались лишь немного выше, чем во втором, для T < 420 К. Но уже при 450 К проводимость **XV** становится 5.8×10^{-5} См/см, что на порядок меньше, чем для **XVI** при той же температуре (6.9×10^{-4} См/см). Последнее можно объяснить более высоким содержанием высокополяризуемых катионов цезия в составе **XVI**.

В четвертой главе описано исследование ионной подвижности в твердых растворах на основе трифторида висмута.

Твердые растворы $K_{(0.5-x)}Me_xBi_{0.5}F_{2+x}$ (Me = Cd, Ba). Ниже температуры 180 К спектры ЯМР ¹⁹F ТР $K_{0.41}Ba_{0.09}Bi_{0.5}F_{2.09}$ (I), $K_{0.41}Cd_{0.09}Bi_{0.5}F_{2.09}$ (II) (рисунок

10), K_{0.45}Ba_{0.05}Bi_{0.5}F_{2.05} (III) и K_{0.45}Cd_{0.05}Bi_{0.5}F_{2.05} (IV) соответствуют жесткой решетке. В области температур 150-200 К спектры можно разложить на две гауссовы компоненты p_1 и p_2 с XC \approx 146±5 и 38±5 м.д. (рисунок 11), которые можно отнести к ионам фтора в нормальных и междоузельных позициях. Повышение температуры от 190 до 350 К приводит к активации локальных движений (E_a \approx 0.29 – 0.31 эВ) во фторидной подсистеме TP, сужению спектра ЯМР, изменению его формы – появлению расположенной между компонентами p_1 и p_2 «узкой» линии p_3 с XC = 109–115 м.д., шириной Δ H \approx 11 кГц для TP III, IV и выше 15 кГц для TP I, II (T = 200 K, рисунок 11).

В области температур 270-320 К линии p_1 и p_2 сливаются с узкой компонентой p_3 , и спектр ЯМР ¹⁹F моделируется практически симметричной линией с шириной \approx 3.4-5 кГц (рисунки 10, 11), отвечающей высокомобильным ионам фтора. Число таких ионов при данной температуре зависит от природы фторида MF₂ и его концентрации и растет с увеличением температуры. Более высокий интервал температур перехода фторсодержащих группировок от жесткой решетки к локальным движениям (диффузии) В ТР, содержащих ИОНЫ кадмия $K_{(0.5-x)}Cd_xBi_{0.5}F_{2+x}$, по сравнению с аналогич-

ными ТР $K_{(0.5-x)}Ba_xBi_{0.5}F_{2+x}$, может быть связан с размером кубической ячейки. В исходном KBiF₄ параметр a = 5.9224 Å, добавка BaF₂ приводит к увеличению этого параметра (a = 5.9315 Å, x = 0.09), что обеспечивает более легкий переход ионов фтора от одного вида движения к другому. Напротив, добавка CdF₂ ведет к уменьшению параметра (a = 5.8635 Å, x = 0.09). Выше 350 K спектры ЯМР ТР **I**– **IV** состоят из одиночных симметричных линий (рисунок 10), параметры которых свидетельствуют о доминирующей роли трансляционной диффузии во фторидной подрешетке ($\Delta H \le 1.8$ кГц для ТР **I**, **III**, **IV** и 2.4 кГц для ТР **II** при 450 K; $S_2 \le 0.09 \ \Gamma c^2$).

Температурные зависимости электропроводности подчиняются аррениусовской зависимости $\sigma T = A \cdot \exp(-E_a/kT)$. Значения энергии активации, $E_a = 0.46$, 0.44 и 0. $\log(A, K \times Cm/cm) = 5.72$, 5.6 соответственно, очень близмость порядка 10^{-4} См/см п

вации, $E_a = 0.46$, 0.44 и 0.45 (±0.02 эВ), и предэкспоненциального множителя, log(A, K×Cм/см) = 5.72, 5.63 и 5.70 (±0.03), полученные для образцов **II**, **III** и **IV** соответственно, очень близки. Изученные ТР имеют высокую ионную проводимость порядка 10^{-4} См/см при 310 К и 10^{-2} См/см при 450 К. Результаты измерений находятся в хорошем согласии с данными ЯМР, рассмотренными выше.

Твердые растворы в системе $K_{1-x}Bi_{1-y}Zr_{x+y}F_{4+2(x+y)}$ **.** Согласно данным РФА ТР состава $K_{0.975}Bi_{0.975}Zr_{0.05}F_{4,1}$ (**V**) имеет флюоритовую структуру с параметрами

ячейки, близкими к параметрам ячейки для TP 40KF–60BiF₃. Для образцов $K_{0.95}Bi_{0.95}Zr_{0.1}F_{4.2}$ (VI) и $K_{0.9}Bi_{0.9}Zr_{0.2}F_{4.4}$ (VII) и $K_{0.85}Bi_{0.85}Zr_{0.3}F_{4.6}$ (VIII) параметры решетки близки к KBi_3F_{10} (в VII и VIII имеется неидентифицируемая РФА примесь).

Жесткая решетка для фторидной подсистемы ТР V–VII реализуется ниже 150 К, а для образца VIII – ниже 210 К. Трансформация спектров ЯМР ¹⁹F в области температур 150–320 К (рисунок 12), обусловленная появлением локальной подвижности во фторидной подрешетке ТР V–VIII, заключается в сужении спек-

Рисунок 12 – Трансформация спектров ЯМР ¹⁹F образцов VI (а), VIII (б) при вариациях температуры

тра и появлении в нём узкой компоненты. Начальная температура этого процесса определяется концентрацией тетрафторида циркония в образце.

Интенсивность обменных процессов (реориентаций) во фторидной подрешетке с повышением температуры до 450 К возрастает, что приводит к сужению основной компоненты в спектрах ЯМР ¹⁹F ТР V-VII до 1.2 кГц. На основании полученных данных можно говорить о доминирующей роли диффузии в указанных ТР в области температур 350–400 К. Данные импедансной спектроскопии находятся в соответствии с данными ЯМР ¹⁹F. Ионная проводимость образцов возрастает с увеличением содержания фторида калия и снижается при повышении концентрации тетрафторида циркония. ТР V–VIII обладают высокой ионной проводимостью ~ $10^{-2} - 10^{-4}$ См/см и могут быть использованы в качестве твердых электролитов.

 $K_{0.5-x}Pb_{x}Bi_{0.5}F_{2+x}$. Температурная трансформация спектров ЯМР ¹⁹F TP $K_{0.45}Pb_{0.05}Bi_{0.5}F_{2.05}$ (IX) и $K_{0.41}Pb_{0.09}Bi_{0.5}F_{2.09}$ (X) (рисунок 13) обусловлена изменением динамического состояния резонирующих ядер во фторидной подрешетке.

При температурах ниже 160 К спектры ЯМР ¹⁹F состоят из асимметричной линии с XC \approx 140±5 м.д. (плечо \approx 50±10 м.д.) при общей ширине спектра \approx 57 и 58 кГц, соответственно для ТР **IX** и **X**.

Спектр ЯМР **IX** в области 150–170 К можно смоделировать двумя гауссовыми компонентами p_1 и p_2 с XC \approx 139 и 30 м.д. (рисунок 14), относящимися к ионам фтора, локализованным соответственно в нормальных (F_n) и межузельных (F_i) позициях решетки. Исходя из этого, можно предположить, что структура ближнего порядка в TP K_{0.5-x}Pb_xBi_{0.5}F_{2+x} может быть интерпретирована как промежуточная

Рисунок 13 – Трансформация спектров ЯМР твердых растворов **IX** (а) и **X** (б) при вариациях температуры

между кубическими $F_{(n)8}$ и кубооктаэдрическими $F_{(i)12}$ кластерами. Разложение спектров ЯМР ¹⁹F при 170 К позволило оценить относительные площади различных пиков и установить процентное содержание фторид-ионов, соответствующих этим пикам. Для всех исследуемых образцов получено хорошее совпадение (таблица 1).

Рисунок 14 – Разложение спектров ЯМР ¹⁹F твердого раствора **IX** на компоненты

Параметры спектров ЯМР ¹⁹F TP **IX** и **X** свидетельствуют об отсутствии во фторидной системе ниже 180 K движений ионов с частотами выше 10⁴ Гц ("жесткая решетка" в терминах ЯМР). В области температур 190–350 K наблюдается общее сужение спектра ЯМР, перераспределение интегральных ин-

Таблица 1 – Интенсивности пиков p_1 и p_2 при T = 170 К и число n ионов фтора в нормальных (F_n) и межузельных (F_i) позициях как функция от *x* в твердых растворах $M_{0.5-x}Pb_xBi_{0.5}F_{2+x}$

Обр-ц	Х			$n(F_n) \pm 0.03$	$\begin{array}{c} n(F_i) \pm \\ 0.03 \end{array}$
IX	0.05	76	24	1.56	0.49
X	0.09	75	25	1.57	0.52
XI	0.05	71	29	1.48	0.59
XII	0.09	69.5	30.5	1.45	0.64

тенсивностей компонент p_1 и p_2 (данные компьютерного моделирования (КМ)) и изменение его формы (рисунок 13), связанное с появлением новой «узкой» компоненты p_m (рисунок 14). Наблюдаемая трансформация спектров ЯМР ¹⁹F в отсутствии ФП в этой области температур (данные ДСК) связана с активацией локальных движений во фторидной подсистеме ТР **IX** и **X** ($E_a \approx 0.30$ эВ). Возникновение локальной подвижности может быть вызвано появлением обмена между атомами фтора разных фторидных подрешеток. По данным КМ новая линия p_m с XC = 109–110 м.д., шириной $\Delta H_{1/2} \sim 11-13$ кГц (T = 200 K) расположена между компонентами p_1 и p_2 (рисунок 14). Интенсивность этой компоненты, принадлежащей мобильным ионам фтора, растет с увеличением температуры (рисунок 15), тогда как интегральные интенсивности широких компонент уменьшаются практически до нуля в области температур $200 \rightarrow 310$ K.

При этом число мобильных ионов при одинаковой температуре больше во фторидной подрешетке твердого раствора с меньшим содержанием KF (рисунок 15). Учитывая, что параметры ячеек ТР ІХ и Х практически одинаковы (а = 5.9160 и 5.9112 Å соответственно), можно предположить, что количество мобильных ионов фтора при конкретной температуре в данном случае определяется числом ионов свинца, обладающих высокой поляризуемостью, что, как известно,

способствует более легкому переходу к диффузии ионов фтора в ТР. В области температур 300–350 К спектры ЯМР ¹⁹F ТР **IX** и **X** моделируются практически симметричными линиями лоренцевой формы (95-80% от спектра) с шириной менее 3 кГц и $S_2 \sim 0.55$ и 0.25 Гс² соответственно при 350 К, что свидетельствует о доминирующей роли диффузии ионов фтора в этих твердых растворах.

«неподвижных» (1, 3) ионов фтора в **Rb**_{0.5-х}**Pb**_x**Bi**_{0.5}**F**_{2+х}. Трансформация твердых растворах $K_{(0,5-x)}Pb_xBi_{0,5}F_{(2+x)}$ спектров ЯМР ¹⁹F ТР Rb_{0.45}Pb_{0.05}Bi_{0.5}F_{2.05} (XI) и Rb_{0.41}Pb_{0.09} Bi_{0.5}F_{2.09} (XII) в области 150 – 370 К аналогична рассмотренной выше для ТР IX и X, однако температуры начала изменений характера ионных движений отличаются. Интегральная интенсивность «узких» компонент в спектрах ТР XI, XII при одинаковой температуре, в области 200–300 К, выше для ТР с большим содержанием ионов рубидия, тогда как для образцов IX, Х – чем меньше ионов калия в решетке, тем больше площадь узкой компоненты. Замещение калия рубидием приводит к заметному увеличению параметра решетки ТР (a = 6.0527 и 6.0393 Å, x = 0.05 и 0.09). Можно заключить, что в данном случае число подвижных ионов в большей степени определяется объемом элементарной

K_{0.5-x}Pb_xBi_{0.5}F_{2+x} P.% 100 80 60 0.05 - 1.20.09 - 3,4 40 20 0 300 150 200 250 350 400 T.K

Рисунок 15 – Температурные зависимости концентрации мобильных (2, 4) и

ячейки по сравнению с концентрацией высокополяризуемых катионов. Наблюдаемые выше 350 К параметры спектров ЯМР ТР **IX–XII** свидетельствуют о до-

Рисунок 16 — Температурные зависимости ионной проводимости твердых растворов $Rb_{(0.5-x)}Pb_{x}Bi_{0.5}F_{(2+x)}.$

минирующей роли диффузии во фторидной подрешетке ($\Delta H_{1/2} \leq 1.5 \ \kappa \Gamma \mu$ при 450 K, S₂(F) $\leq 0.04 \ \Gamma c^2$). Температурный гистерезис формы спектров ЯМР практически отсутствует.

Экспериментальные значения проводимости хорошо описываются аррениусовской зависимостью типа $\sigma = (A/T) \exp(-E_a/kT)$. Значения проводимости образцов для температуры 453 К представлены в таблице 2 и на рисунке 16.

Из температурной зависимости второго момента спектров ЯМР 19 F можно рассчитать частоту прыжков иона v_c при данной температуре, что позволяет, принимая во внимание структурные данные, оценить коэффициент диффузии и

ионную электропроводность о_{NMR}. Полученные значения представлены в таблице 2. Расчетные и экспериментальные значения электропроводности достаточно хорошо совпадают. Для образцов содер-

Таблица. 2 – Корреляционная частота прыжков ионов фтора v_c , коэффициент диффузии D_{NMR} , оценка ионной электропроводности σ_{NMR} , ионная электропроводность σ при 453 К.

Параметр	Номер образца					
	IX	Х	XI	XII		
ν _c , Гц	5.17×10^7	4.15×10^7	3.66×10^7	4.84×10^{7}		
$D_{\rm NMR}, {\rm cm}^2/{\rm c}$	7.5×10 ⁻⁹	6.0×10 ⁻⁹	5.6×10 ⁻⁹	7.4×10 ⁻⁹		
σ _{NMR} , См/см	1.2×10^{-3}	9.6×10 ⁻⁴	8.3×10^{-4}	1.1×10^{-3}		
σ, См/см	4.25×10^{-3}	3.84×10^{-3}	4.87×10^{-3}	3.85×10^{-3}		

жащих 5% PbF₂ ионная проводимость немного выше, чем для образцов с 9%-ным содержанием, несмотря на то, что частота локальных ионных движений для последних более высока.

выводы

1. Методами ЯМР, ДСК, РФА, РСА и импеданса исследован большой ряд неорганических систем, содержащих фториды сурьмы(III) и висмута(III), с целью поиска среди них объектов с высокой ионной подвижностью и проводимостью, а также установления факторов, определяющих характер ионных движений и величину ионной проводимости. Получены и систематизированы данные о новых соединениях и твердых растворах с высокой ионной (суперионной) проводимостью. Рассмотрено влияние катионов с высокой поляризуемостью на характер ионных движений в исследованных объектах и электрофизические свойства изученных соединений (твердых растворов).

2. Получены и систематизированы данные о характере ионной подвижности, фазовых переходах и ионной проводимости в большом ряде комплексных фторидов трехвалентной сурьмы с гомо- и гетероатомной катионной подрешеткой. Определены виды ионных движений в индивидуальных соединениях и кристаллических фазах переменного состава в интервале температур 150-500 К. Установлено, что фазовые переходы во фтороантимонатах(III), как правило, являются фазовыми переходами в суперионное состояние, а высокая ионная (суперионная) проводимость в β -модификациях (~10⁻⁴ – 10⁻² См/см при 400–480 K) обусловлена трансляционной диффузией ионов фтора (аммония). Впервые определены структуры двух фтороантимонатов(III) с гетероатомной катионной подрешеткой CsRb₂Sb₄F₁₅ и K_{0.7}Rb_{0.3}SbF₄, а также представителей рядов MSbF₄ и MSb₂F₇ с катионами щелочных металлов: LiSbF₄ и LiSb₂F₇.

3. Установлено, что доминирующим видом ионной подвижности в высокотемпературных β -фазах K_{0.7}M_{0.3}SbF₄ (M = Rb, NH₄) является диффузия ионов фтора и аммония. Показано, что при фазовых переходах в K_{0.7}M_{0.3}SbF₄ образуются β -модификации с проводимостью ~10⁻² – 10⁻⁴ См/см при 450–500 К. Данные ЯМР свидетельствуют о стабилизации суперионной фазы β -K_{0.7}(NH₄)_{0.3}SbF₄ при охлаждении (490–300 K), вследствие чего наблюдается существенный рост ионной проводимости в образце при комнатной температуре. Для K_{0.7}Rb_{0.3}SbF₄ стабилизация β -фазы происходит после нескольких циклов нагрев – охлаждение.

Исследованы ионная подвижность, фазовые переходы и электрофизиче-4. ские свойства в гептафтородиантимонатах(III) $Cs_{(1-x)}M_xSb_2F_7$ (M = K, Rb, NH₄) и $K_{0.4}Rb_{0.6}Sb_2F_7$. Динамика ионов фтора в $Cs_{(1-x)}M_xSb_2F_7$ определяется температурой и числом вводимых в цезиевую подсистему катионов калия или аммония. Установлено, что результате фазовых переходов В В комплексных фтороантимонатах(III) цезия-калия, цезия-аммония и калия-рубидия образуются β-модификации, в которых доминирующей формой ионных движений становится диффузия ионов фтора (аммония). Высокотемпературные фазы Cs_(1-x)K_xSb₂F₇, $Cs_{1-r}(NH_4)_rSb_2F_7$ и $K_{0.4}Rb_{0.6}Sb_2F_7$ являются суперионными, их проводимость достигает значений $\sim 10^{-3}$ – 10^{-4} См/см при температурах 463-483 К.

5. Впервые изучен характер ионной подвижности в новых твердых растворах в системе BiF_3 -KF-ZrF₄ в зависимости от температуры и содержания ZrF₄. Установлено, что интервал температур, в котором реализуется тот или иной вид ионных движений, зависит от концентрации ZrF₄ в составе образца. Этот же фактор и концентрация фторида калия определяют величину ионной проводимости образца. Значения ионной проводимости для твердых растворов в системе BiF_3 -KF-ZrF₄ (~ $10^{-4} - 10^{-2}$ Cm/cm выше 470 K) свидетельствуют об их принадлежности к семейству суперионных проводников.

6. Впервые исследованы новые твердые растворы в системах KF-MeF₂- BiF_3 (Me = Ba, Cd) и MF–PbF₂–BiF₃ (M = K, Rb) с высокой ионной (суперионной) проводимостью, величина которой определяется природой и концентрацией фторидов в составе образца. Установлены факторы, определяющие число мобильных ионов фтора при данной температуре, и интервал температур, в котором диффузия ионов становится доминирующим процессом во фторидной подрешетке обпроводимость образцов разца. Высокая ионная $K_{(0,5-x)}Me_{x}Bi_{0,5}F_{2+x}$ И $M_{(0.5-x)}$ Pb_xBi_{0.5}F_(2+x), $x = 0.05, 0.09 \ (\approx 10^{-2} - 10^{-3} \text{ См/см выше 450 K})$ позволяет отнести эти твердые растворы к классу суперионных проводников и указывает на возможность их использования в качестве основы для получения функциональных материалов.

Основные результаты работы изложены в следующих ведущих рецензируемых научных журналах:

1. В.Я. Кавун, А.Б. Слободюк, <u>М.М. Полянцев</u>, Л.А. Земнухова. Ионная подвижность и фазовые переходы в гептафтородиантимонатах MSb_2F_7 и $Cs_{(1-x)}M'_xSb_2F_7$ (M' = K, NH₄) по данным ЯМР и ДСК // Журн. структур. химии. 2013. Т. 54. Приложение. *S139 – S146*.

2. В.Я. Кавун, <u>М.М. Полянцев</u>, Л.А. Земнухова, О.В. Бровкина, В.И. Сергиенко. Ионная подвижность и фазовые переходы в соединениях $K_{0.65}Rb_{0.35}SbF_4$ и (NH₄)_{0.4}Rb_{0.6}SbF₄ по данным ЯМР и ДСК // Журн. структур. хи-мии. 2014. Т. 55. № 5. С. 962–965.

3. В.Я. Кавун, Е.Б. Меркулов, <u>М.М. Полянцев</u>, Р.М. Ярошенко, В.К. Гончарук. Фазовые переходы и ионная подвижность в твердых растворах в системе BiF₃–KF–ZrF₄ // Журн. структур. химии. 2015. Т.56. № 4. С. 698–701.

4. В.Я. Кавун, <u>М.М. Полянцев</u>, Л.А. Земнухова. Ионная подвижность и фазовый переход в гептафтородиантимонате(III) Cs_{0.4}Rb_{0.6}Sb₂F₇ // Журн. структур. химии. 2015. Т.56. № 4. С. 806–808.

5. В.Я. Кавун, Н.Ф. Уваров, А.Б. Слободюк, <u>М.М. Полянцев</u>, А.С. Улихин, Е.Б. Меркулов, В.К. Гончарук. Ионная подвижность и проводимость в твердых растворах в системе KBiF₄–ZrF₄ // Электрохимия. 2015. Т. 51. № 6. С. 589– 594.

6. V.Ya. Kavun, <u>M.M. Polyantsev</u>, L.A. Zemnukhova, A.B. Slobodyuk, V.I. Sergienko. Ion mobility and phase transitions in heptafluorodiantimonates(III) $Cs_{(1-x)}(NH_4)_xSb_2F_7$ and $K_{0.4}Rb_{0.6}Sb_2F_7$ according to NMR and DSC data // J. Fluor. Chem. 2014. Vol. 168. P. 198–203.

7. N.V. Makarenko, A.A. Udovenko, L.A. Zemnukhova, V.Ya. Kavun, <u>M.M.</u> <u>Polyantsev</u>. Synthesis, crystal structure and ion mobility in the complex fluorides of antimony (III) with the lithium cation // J. Fluor. Chem. 2014. Vol. 168. P. 184–188.

8. L.A. Zemnukhova, A.A. Udovenko, N.V. Makarenko, G.A. Fedorishcheva, <u>M.M. Polyantsev</u>, V.Ya. Kavun. Synthesis, crystal structure, and properties of pentadecafluorotetraantimonate(III) $CsRb_2Sb_4F_{15}$ // J. Fluor. Chem. 2015. Vol. 178. P. 131–135.

9. V.Ya. Kavun, A.V. Gerasimenko, N.F. Uvarov, <u>M.M. Polyantsev</u>, L.A. Zemnukhova. Ion mobility, conductivity, structure, and phase transitions in $K_{0.7}M_{0.3}SbF_4$ compounds with M = Rb, NH₄ // J. Solid State Chem. 2016. Vol. 241 (2016) 9 – 17.

10. V.Ya. Kavun, N.F. Uvarov, A.B. Slobodyuk, <u>M.M. Polyantsev</u>, E.B. Merkulov, A.S. Ulihin, V.K. Goncharuk. Ion mobility and conductivity in the $M_{0.5-x}Pb_xBi_{0.5}F_{2+x}$ (M = K, Rb) solid solutions with fluorite structure // J. Solid State Chem. 2017. Vol. 249. P. 204–209.

11. V.Ya. Kavun, N.F. Uvarov, E.B. Merkulov, <u>M.M. Polyantsev</u>, A.S. Ulihin, V.K. Goncharuk, and V.I. Sergienko. Ion mobility and conductivity in fluorite-type solid solutions in KF–MF₂–BiF₃ systems (M = Ba, Cd) according to ¹⁹F NMR and conductivity data // Solid State Ionics 2015. Vol. 274. P. 4–7.

Автор выражает глубокую признательность всем коллегам, принимавшим участие в данной работе:

- синтез комплексных фтороантимонатов(III) осуществлялся в лаборатории химии редких металлов ИХ ДВО РАН (зав.лаб. д.х.н., проф. Л.А. Земнухова);

- синтез твердых растворов на основе BiF₃ осуществлялся в лаборатории оптических материалов ИХ ДВО РАН (зав.лаб. д.х.н., проф. В.К. Гончарук);

- исследования проводимости выполнены в лаборатории неравновесных твердофазных систем ИХТТМ СО РАН (зав.лаб. д.х.н. Н.Ф. Уваров), а также часть измерений проведена к.х.н. А.Б. Подгорбунским в отделе электрохимических систем и процессов модификации поверхности ИХ ДВО РАН;

- рентгенофазовые и рентгеноструктурные исследования проведены сотрудниками лаборатории рентгеноструктурного анализа ИХ ДВО РАН к.х.н. Т.А. Кайдаловой, к.х.н. А.А. Удовенко, к.х.н. А.В. Герасименко;

- калориметрические измерения проведены Н.Н. Савченко в лаборатории фторидных материалов ИХ ДВО РАН (зав.лаб. д.х.н. Л.Н. Игнатьева).

Автор выражает особую благодарность научному руководителю д.х.н. Кавуну Валерию Яковлевичу, а также к.х.н. Слободюку Арсению Борисовичу за помощь в проведении экспериментов и обсуждении результатов.