На правах рукописи

Седакова Татьяна Валерьевна

# СИНТЕЗ, СТРОЕНИЕ, СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ И ТЕРМОХРОМНЫЕ СВОЙСТВА КОМПЛЕКСНЫХ СОЕДИНЕНИЙ Sb(III) И Te(IV) С АЗОТСОДЕРЖАЩИМИ ОРГАНИЧЕСКИМИ КАТИОНАМИ

Специальность 02.00.04 – физическая химия

Автореферат диссертации на соискание ученой степени кандидата химических наук

Владивосток - 2008

# Работа выполнена в Институте химии Дальневосточного отделения Российской академии наук

| Научный руководитель:  | доктор химических наук                      |  |  |  |  |
|------------------------|---------------------------------------------|--|--|--|--|
|                        | Мирочник Анатолий Григорьевич               |  |  |  |  |
| Официальные оппоненты: | доктор химических наук, профессор           |  |  |  |  |
|                        | Земнухова Людмила Алексеевна                |  |  |  |  |
|                        | кандидат химических наук                    |  |  |  |  |
|                        | Львов Игорь Борисович                       |  |  |  |  |
| Ведущая организация:   | Институт органической химии УНЦ РАН, г. Уфа |  |  |  |  |

Защита состоится « 26 » декабря 2008 г. в часов на заседании диссертационного совета Д 005.020.01 при Институте химии Дальневосточного отделения Российской академии наук по адресу: 690022, Приморский край, г. Владивосток, проспект 100-летия Владивостока, 159, Институт химии ДВО РАН

С диссертацией можно ознакомиться в Центральной библиотеке ДВО РАН

Автореферат разослан « » ноября 2008 г.

Ученый секретарь диссертационного совета, кандидат химических наук

Бровкина О.В.

#### ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность проблемы</u>. Интенсивная люминесценция  $s^2$  – ионов (так называемых ртутеподобных ионов) позволяет использовать их для получения эффективных люминофоров для люминесцентных ламп, катодо - и рентгенолюминофоров. Следует отметить, что до настоящего времени остаются дискуссионными вопросы, связанные с механизмом люминесценции ртутеподобных ионов, взаимосвязью строения координационного полиэдра  $s^2$  – иона, стереохимической активностью неподеленной электронной пары (НЭП), спектрально-люминесцентными и термохромными свойствами соединений, ролью состояния переноса заряда лиганд – металл (СПЗ) (D – состояние). В связи с разработкой оптически прозрачных светотрансформирующих полимерных материалов актуальной задачей является синтез и изучение взаимосвязи строения, спектрально-люминесцентных, термохромных и фотохимических свойств комплексных соединений s<sup>2</sup> – ионов, интенсивно люминесцирующих при комнатной температуре, хорошо совместимых с полимерными матрицами и обладающих повышенной фотостабильностью.

<u>Цель настоящей работы</u> заключалась в синтезе, исследовании взаимосвязи строения, спектрально-люминесцентных и термохромных характеристик комплексных соединений галогенидов Sb(III) и Te(IV) с азотсодержащими органическими катионами. Самостоятельный интерес представляло получение соединений Sb(III) и Te(IV), интенсивно люминесцирующих при комнатной температуре, обладающих повышенной фотостабильностью и хорошей совместимостью с полимерными матрицами.

Решались следующие задачи:

- синтез комплексных соединений галогенидов сурьмы(III) и теллура(IV) с азотсодержащими органическими катионами;

- исследование взаимосвязи геометрического и электронного строения (тип анионной подрешетки, степень искажения координационного полиэдра иона Sb(III) и Te(IV), наличие  $\pi$  – стэкинг взаимодействия между органическими катионами, наличие низколежащей компоненты A – полосы s<sup>2</sup> – иона (<sup>3</sup>P<sub>1</sub>  $\leftarrow$  <sup>1</sup>S<sub>0</sub> переход)) и спектрально-люминесцентных, термохромных и фотохимических свойств соединений Sb(III) и Te(IV);

- изучение фотохимического поведения комплексов сурьмы(III) Dphg и нитрата европия(III) с Phen при совместном введении в полиэтилен высокого давления (ПЭВД).

<u>Научная новизна</u>. Получены соединения галогенидов Sb(III) и Te(IV) с азотсодержащими органическими катионами следующих составов: ASbHal<sub>4</sub> (A = пиридиний (HPy)<sup>+</sup>; 4-бензилпиридиний (H4-BzPy)<sup>+</sup>; тетраметиламмоний (Me<sub>4</sub>N) <sup>+</sup>; тетраэтиламмоний (Et<sub>4</sub>N) <sup>+</sup>; тетрабутиламмоний (Bu<sub>4</sub>N) <sup>+</sup>; Hal = Cl<sup>-</sup>, Br<sup>-</sup>; I<sup>-</sup>); A<sub>2</sub>SbHal<sub>5</sub> и A<sub>2</sub>TeHal<sub>6</sub> (где A = 2-бензилпиридиний (H2-BzPy)<sup>+</sup> и (H4-BzPy)<sup>+</sup>; 6-метилхинолиний (H6-MeQ)<sup>+</sup>; анилиний (HAn)<sup>+</sup>; Cs<sup>+</sup>; гуанидиний (HGu)<sup>+</sup>; N,N' – дифенилгуанидиний (HDphg)<sup>+</sup>; 2,2'-дипиридиний (HDip)<sup>+</sup>; 1,10-фенантролиний (HPhen)<sup>+</sup>; (Et<sub>4</sub>N)<sup>+</sup>; 2,4-диметилпиридиний (лутидиний) (HLu)<sup>+</sup>; Hal = Cl, Br, I); A<sub>3</sub>SbHal<sub>6</sub> (где A = (H2- и H4-BzPy)<sup>+</sup>, (H6-MeQ)<sup>+</sup>, (HDphg)<sup>+</sup>; (Et<sub>4</sub>N)<sup>+</sup>; Hal = Cl, Br, I) и (HAn)<sub>2</sub>SbCl<sub>5</sub>·(HAn)Cl·H<sub>2</sub>O, часть из которых синтезирована впервые. Проведено систематическое исследование взаимосвязи строения, спектрально-люминесцентных, термохромных и фотохимических свойств соединений.

Установлено, что факторами, способствующими интенсификации люминесценции  $s^2$  – иона являются островное строение анионной подрешетки и слабые искажения координационного полиэдра Sb(III) и Te(IV).

Обнаружено, что наличие в спектрах возбуждения люминесценции (спектрах диффузного отражения) Sb(III) и Te(IV) длинноволновой компоненты А полосы приводит к увеличению вероятности безызлучательных переходов и уменьшению интенсивности люминесценции s<sup>2</sup> – иона.

В комплексных соединениях Sb(III) с анилином (HAn)<sub>2</sub>SbBr<sub>5</sub> и

 $(HAn)_2SbCl_5 \cdot (HAn)Cl \cdot H_2O$  при 77 К впервые обнаружено селективное возбуждение люминесценции иона сурьмы и фосфоресценции органического катиона  $(HAn)^+$ .

На примере комплексных соединений сурьмы(III) с 6-метилхинолином (H6-MeQ)<sub>2</sub>SbCl<sub>5</sub>, (H6-MeQ)<sub>3</sub>SbBr<sub>6</sub> и (H6-MeQ)<sub>2</sub>SbI<sub>5</sub> выявлена важная роль  $\pi$  – стэкинг взаимодействия: разориентация хинолиновых колец, а также уменьшение степени искажения координационного полиэдра Sb(III) способствует появлению собственной люминесценции Sb(III).

Впервые в соединениях галогенидов Sb(III) и Te(IV) с азотсодержащими органическими катионами обнаружен линейный реверсивный термохромизм, обусловленный изменением асимметрии А полосы s<sup>2</sup> – иона.

<u>Практическое значение работы.</u> Получены и охарактеризованы комплексные соединения галогенидов Sb(III) и Te(IV) с азотсодержащими органическими катионами состава: ASbHal<sub>4</sub> (A = (HPy)<sup>+</sup>; (H4-BzPy)<sup>+</sup>; (Me<sub>4</sub>N)<sup>+</sup>; (Et<sub>4</sub>N)<sup>+</sup>; (Bu<sub>4</sub>N)<sup>+</sup>; Hal = Cl<sup>-</sup>, Br<sup>-</sup>; I<sup>-</sup>); A<sub>2</sub>SbHal<sub>5</sub> и A<sub>2</sub>TeHal<sub>6</sub> (A = (H2- и H4-BzPy)<sup>+</sup>; (H6-MeQ)<sup>+</sup>; (HAn)<sup>+</sup>; Cs<sup>+</sup>; HGu<sup>+</sup>, (HDphg)<sup>+</sup>; (HDip)<sup>+</sup>; (HPhen)<sup>+</sup>; (Et<sub>4</sub>N)<sup>+</sup>; (HLu)<sup>+</sup>; Hal = Cl, Br, I); A<sub>3</sub>MHal<sub>6</sub> (A = (H2- и H4-BzPy)<sup>+</sup>, (H6-MeQ)<sup>+</sup>, (HDphg)<sup>+</sup>; Et<sub>4</sub>N<sup>+</sup>; M = Sb, Hal = Cl, Br, I) и (HAn)<sub>2</sub>SbCl<sub>5</sub>·(HAn)Cl·H<sub>2</sub>O (часть соединений синтезирована впервые).

Соединения сурьмы(III) с N,N'- дифенилгуанидином, обладающие повышенной фотостабильностью и интенсивно люминесцирующие при комнатной температуре, предложены в качестве активаторов светотрансформирующих полимерных материалов. Соединения теллура (IV), проявляющие термохромные свойства, могут использоваться как индикаторы температур.

<u>На защиту выносятся</u>: исследование взаимосвязи строения, спектрально-люминесцентных, термохромных и фотохимических свойств комплексных соединений галогенидов Sb(III) и Te(IV) с азотсодержащими органическими катионами. Изучение фотохимического поведения комплексных соединений сурьмы(III) и европия(III) при совместном введении в ПЭВД.

<u>Личный вклад автора.</u> В работе представлены результаты исследований, выполненные лично автором или при его непосредственном участии. Автор непосредственно участвовал в проведении экспериментов, их обсуждении и формулировании выводов. Автором был проведен синтез соединений и количественное определение в них галогенид – ионов.

Кристаллические структуры соединений определены к.ф.-м.н. Буквецким Б.В., к.х.н. Удовенко А.А., съемка ИК спектров выполнена Жирко И.Н., д.х.н. Игнатьевой Л.Н., съемка спектров РФЭС выполнена к.х.н. Николенко Ю.М. Содержание сурьмы в исследуемых соединениях методом атомноабсорбционной спектроскопии выполнено к.х.н. Куриленко Л.Н.

<u>Апробация работы</u>. Основные положения и результаты диссертационной работы докладывались на II Международном симпозиуме «Химия и химическое образование» (Владивосток, сентябрь 2000 г.); ХХ Международной Чугаевской конференции по координационной химии (Ростов-на-Дону, июнь 2001 г.); Международной конференции по люминесценции, посвященной 110-летию со дня рождения акад. С.И. Вавилова (Москва, октябрь 2001 г.); научном симпозиуме Химия: фундаментальные и прикладные исследования, образование (Хабаровск, июнь 2002 г.); XVII Менделеевском съезде по общей и прикладной химии (Казань, сентябрь 2003 г.); IV International Symposium "Design and Synthesis of Supramolecular Architectures (Казань, Май 2006 г.); на XVIII Менделеевском съезде по общей и прикладной химии. IV российско-французский симпозиуме "Супрамолекулярные системы в химии и биологии" (Москва, сентябрь 2007 г.).

<u>Публикации.</u> Основные результаты диссертационной работы изложены в 12 статьях в ведущих рецензируемых научных изданиях, определенных ВАК. <u>Структура и объем работы.</u> Диссертация изложена на 189 страницах машинописного текста, состоит из введения, 5 глав, выводов, библиографического списка цитируемой литературы из 225 наименований, содержит 48 рисунков и 15 таблиц.

Работа выполнена по тематическим планам Института химии ДВО РАН при финансовой поддержке РФФИ (проект 04-03-33155 «Молекулярный дизайн и кооперативные фото- и термостимулированные процессы в комплексах р-элементов: люминесценция, термохромизм, люминесцентный термохромизм, топохимия», ОХНМ РАН (Программа № 7 «Химия и физикохимия супрамолекулярных систем и атомных кластеров»).

#### ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулирована цель работы, приведены основные защищаемые положения и описана структура диссертации.

<u>В первой главе</u> рассмотрены особенности геометрического строения (тип анионной подрешетки и  $\pi$  – стэкинг взаимодействие) и спектральнолюминесцентные характеристики соединений s<sup>2</sup> – ионов с азотсодержащими органическими катионами. Важными характеристиками структур являются: тип анионной подрешетки, искажения координационного полиэдра иона Sb(III) и Te(IV),  $\pi$  – стэкинг взаимодействие органических катионов. Ряд вопросов, связанных с интерпретацией люминесцентных свойств соединений s<sup>2</sup> – ионов, остается дискуссионным (роль СПЗ, аномально большой Стоксов сдвиг, наличие нескольких типов люминесценции). Сделан важный вывод, что исследование взаимосвязи структурных, спектрально-люминесцентных и оптических, в частности термохромных свойств данного класса соединений является актуальным.

Во второй главе приведены методики синтеза и описание эксперимен-

тальных методв исследования полученных соединений Sb(III) и Te(IV): peнтгеноструктурного анализа (PCA), ИК -, люминесцентной и peнтгенофотоэлектронной спектроскопии (PФЭС), а также спектроскопии диффузного отражения. Методом стационарного фотолиза были исселедованы светотрансформирующие полимерные композиции на основе ПЭВД и соединений сурьмы(III) и европия(III).

<u>В третьей главе</u> дано отнесение характеристических частот в ИК спектрах исследуемых соединений Sb(III) и Te(IV), описание кристаллического строения ряда соединений Sb(III) и Te(IV). На основе данных РФЭС рассмотрены особенности электронного строения ряда соединений сурьмы(III).

#### <u>3.1. Строение (H2-BzPy)<sub>2</sub>SbCl<sub>5</sub></u>

Кристаллическая структура (H2-BzPy)<sub>2</sub>SbCl<sub>5</sub> построена из полимерных гофрированных цепочек  $[Sb_2Cl_{10}]_n^{4n}$ , состоящих из связанных друг с другом сильно искаженных октаэдров, и катионов (H2-BzPy)<sup>+</sup>, объединенных в трехмерный каркас водородными связями N - H . . . Cl.

<u>3.2. Строение (H6-MeQ)<sub>2</sub>SbCl<sub>5</sub>, (H6-MeQ)<sub>3</sub>SbBr<sub>6</sub> и (H6-MeQ)<sub>2</sub>SbI<sub>5</sub></u>

Структура соединений (H6-MeQ)<sub>2</sub>SbCl<sub>5</sub>, (H6-MeQ)<sub>3</sub>SbBr<sub>6</sub> и (H6-MeQ)<sub>2</sub>SbI<sub>5</sub> построена из обособленных анионов  $[Sb_2Cl_{10}]^{4-}$ ,  $[SbBr_6]^{3-}$  и  $[Sb_2I_{10}]^{4-}$ , соответственно и катионов (H6-MeQ)<sup>+</sup>, расположенных между ними и составленых в бесконечные стопки, что способствует эффективному  $\pi$  – стэкинг взаимодействию. Анионы и катионы объединены системой водородных связей и ван – дер - Ваальсовым взаимодействием в трехмерную структуру.

#### <u>3.4. Строение соединений (HAn)<sub>2</sub>SbCl<sub>5</sub>·(HAn)Cl·H<sub>2</sub>O и (HAn)<sub>2</sub>SbBr<sub>5</sub></u>

Кристаллическая структура  $(HAn)_2SbCl_5 \cdot (HAn)Cl \cdot H_2O$  состоит из обособленных квадратных пирамид  $[SbCl_5]^{2^-}$ , хлорид-ионов Cl<sup>-</sup>, катионов анилиния  $(HAn)^+$  и молекул воды (рис. 1). В соединении  $(HAn)_2SbBr_5$  анионная подрешетка состоит из бесконечных полимерных цепей, в которых искажен-



# <u>3.5. Строение комплексных соединений (HDphg)<sub>3</sub>SbCl<sub>6</sub> и (HDphg)<sub>3</sub>SbBr<sub>6</sub>, (HGu)<sub>2</sub>TeBr<sub>6</sub>, (HDphg)<sub>2</sub>TeCl<sub>6</sub> и (HDphg)<sub>2</sub>TeBr<sub>6</sub></u>

Кристаллические структуры  $(HDphg)_3SbCl_6$ И  $(HDphg)_{3}SbBr_{6}$ , (HGu)<sub>2</sub>TeBr<sub>6</sub>, (HDphg)<sub>2</sub>TeCl<sub>6</sub> и (HDphg)<sub>2</sub>TeBr<sub>6</sub> построены из изолированных слабо искаженных октаэдров  $[MHal_6]^{3-}$  (где M = Sb(III), Te(IV)) и катионов (HDphg)<sup>+</sup> ((HGu)<sup>+</sup>), связаных друг с другом водородными связями N – H ... Hal (где Hal = Cl, Br). В соединениях (HDphg)<sub>3</sub>SbCl<sub>6</sub> и (HDphg)<sub>3</sub>SbBr<sub>6</sub> HЭП Sb(III) активна,  $(HGu)_{2}TeBr_{6}$ , стереохимически не В соединениях  $(HDphg)_2TeCl_6$  и  $(HDphg)_2TeBr_6$  влияние НЭП на Te(IV) минимально.

3.8. Рентгенофотоэлектронные спектры комплексных соединений

#### сурьмы(III) с азотсодержащими органическими катионами

Для исследования влияния природы лиганда и внешнесферного органического катиона на электронное строение исследуемых соединений были измерены РЭС соединений Sb(III) с Dphg, (Et<sub>4</sub>N)Cl и 6-MeQ. Влияние галогенид - иона в соединениях Sb (III) с Dphg отражается в уменьшении энергии связывания остовных электронов Sb3d в ряду: SbCl<sub>6</sub>(HDphg)<sub>3</sub>, SbBr<sub>6</sub>(HDphg)<sub>3</sub> и SbI<sub>5</sub>(HDphg)<sub>2</sub> (на 0.9 эВ), что свидетельствует об увеличении электронной плотности на атоме Sb(III). При замене катиона (HDphg)<sup>+</sup> на (Et<sub>4</sub>N)<sup>+</sup> энергия связи в анионе [SbCl<sub>6</sub>]<sup>3-</sup> понижается (на 0.6 эВ), что свидетельствует об уве-

7

личении электронной плотности на атоме Sb(III). Еще большее приращение электронной плотности на атоме Sb(III) наблюдается при замене  $(HDphg)^+$  на  $(H6-MeQ)^+$ , уменьшение энергии связывания Sb3d электронов на 1.2 эВ.

<u>В четвертой главе</u> рассмотрены спектрально-люминесцентные свойства, выявлена взаимосвязь строения анионной подрешетки и люминесцентных свойств комплексных соединений Sb(III) с азотсодержащими органическими катионами. Обнаружены уникальные спектрально-люминесцентные свойства соединений Sb(III) с анилином. Представлены результаты исследования фотохимического поведения соединений сурьмы(III) и европия(III) при совместном введении в ПЭВД. В табл. 1 приведены спектральнолюминесцентные (77 К) и некоторые структурные характеристики исследуемых комплексов сурьмы(III).

#### <u>4.1 (HPy)SbHal<sub>4</sub> (где Hal = Cl, Br, I)</u>

Установлено, что для соединений галогенидов сурьмы(III) с пиридином (HPy)SbHal<sub>4</sub> (где Hal = Cl, Br, I) характерно полное отсутствие люминесценции при 77 и 300 К. Анионная подрешетка комплексов (HPy)SbHal<sub>4</sub> (где Hal = Cl, Br, I) состоит из сильно искаженных октаэдров, объединенных мостиковыми атомами галогена в бесконечные полимерные цепи (табл. 1).

#### <u>4.2 (H2-BzPy)<sub>2</sub>SbCl<sub>5</sub>, (H4-BzPy)<sub>2</sub>SbCl<sub>5</sub></u>

Для соединений хлорида сурьмы(III) с 2- и 4-ВzРу собственная люминесценция иона сурьмы(III) при 77 и 300 К отсутствует (табл. 1). Полимерное строение анионной подрешетки (H2-BzPy)<sub>2</sub>SbCl<sub>5</sub> может способствовать эффективной диссипации энергии электронного возбуждения Sb(III) по полимерной цепи и большим релаксационным потерям энергии в результате структурных преобразований в возбужденном состоянии.

<u>4.1 (H6-MeQ)<sub>2</sub>SbCl<sub>5</sub>, (H6-MeQ)<sub>3</sub>SbBr<sub>6</sub> и (H6-MeQ)<sub>2</sub>SbI<sub>5</sub></u>

Обнаруженные максимальные искажения аниона  $[Sb_2Cl_{10}]^{4-}$  и копланарность катионов (H6-MeQ)<sup>+</sup> в (H6-MeQ)<sub>2</sub>SbCl<sub>5</sub> приводят к отсутствию соб-

Таблица. 1. Структурные и спектрально-люминесцентные характеристики

| Соединение                                         | Строение<br>анионной<br>подрешетки | $\Delta R^*$ , Å   | Δ∠ <sup>**</sup> ,<br>град. | Отнесени<br>е                         | λ, нм                         | I <sub>люм</sub> ,<br>отн.<br>ед. |
|----------------------------------------------------|------------------------------------|--------------------|-----------------------------|---------------------------------------|-------------------------------|-----------------------------------|
| (HPy)SbCl <sub>4</sub>                             | полимер из октаэдров               | 0,752 [1]          | 8 [1]                       | -                                     | -                             | -                                 |
| (HPy)SbBr <sub>4</sub>                             | полимер из октаэдров               | 0,666 [1]          | 6 [1]                       | -                                     | -                             | -                                 |
| (HPy)SbI <sub>4</sub>                              | полимер из октаэдров               | 0,228 [2]          | 5 [2]                       | -                                     | -                             | -                                 |
| (H2-BzPy) <sub>2</sub> SbCl <sub>5</sub>           | полимер из октаэдров               | 0,798;<br>0,663    | 11; 10                      | $S_{\pi\pi^*} \rightarrow S_{\pi\pi}$ | 425, 460,<br>495, 533,<br>585 | < 1                               |
| (H6-MeQ) <sub>2</sub> SbCl <sub>5</sub>            | димер из<br>октаэдров              | 0,865              | 5                           | $S_{\pi\pi^*} \rightarrow S_{\pi\pi}$ | 495                           | 7                                 |
| (H6-MeQ) <sub>3</sub> SbBr <sub>6</sub>            | изолированны<br>е октаэлры         | 0,135              | 3                           | ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$ | 625                           | 4                                 |
| (H6-MeQ) <sub>2</sub> SbI <sub>5</sub>             | димер из<br>октаэлров              | 0,392]             | 3                           | ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$ | 685                           | 1                                 |
| (Et <sub>4</sub> N)SbCl <sub>4</sub>               | тетрамер из<br>октаэдров           | 0,874[4]           | 8 [4]                       | ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$ | 605                           | 1                                 |
| (Bu <sub>4</sub> N)SbCl <sub>4</sub>               | димер из<br>квадратных<br>пирамид  | 0,579;<br>0,52 [5] | 8 [5]                       | ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$ | 530                           | 3                                 |
| (Et <sub>4</sub> N) <sub>3</sub> SbCl <sub>6</sub> | изолированны<br>е октаэдры [3]     |                    |                             | ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$ | 630                           | 180                               |
| (HDphg) <sub>3</sub> SbCl <sub>6</sub>             | изолированны<br>е октаэлры         | 0,038              | 5                           | ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$ | 580                           | 100                               |
| (HDphg) <sub>3</sub> SbBr <sub>6</sub>             | изолированны<br>е октаэдры         | 0                  | 3                           | ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$ | 620                           | 140                               |

соединений Sb(III) при 77 К

 $\overline{\Delta} \mathbf{R}^*$  - разница между самой длинной и самой короткой связью Sb – Hal;



ственной люминесценции иона Sb(III) при 77 и 300 К и появлению люминесценции органической части молекулы при 77 К. Разориентация хинолиновых колец и уменьшение степени искажения координационного полиэдра Sb(III) в (H6-MeQ)<sub>3</sub>SbBr<sub>6</sub> и (H6-MeQ)<sub>2</sub>SbI<sub>5</sub> способствуют появлению люминесценции иона Sb(III) в этих соединениях при 77 К (табл. 1). Большая степень искажения и димерное строение аниона [Sb<sub>2</sub>I<sub>10</sub>]<sup>4-</sup> ((H6-MeQ)<sub>2</sub>SbI<sub>5</sub>) по сравнению с мономером [SbBr<sub>6</sub>]<sup>3-</sup> ((H6MeQ)<sub>3</sub>SbBr<sub>6</sub>) приводит к уменьшению интенсивности люминесценции сурьмы(III) в комплексе (H6-MeQ)<sub>2</sub>SbI<sub>5</sub> в результате диссипации энергии электронного возбуждения по димеру и больших структурных изменениях при фотовозбуждении (табл. 1).

### <u>4.4 (Et<sub>4</sub>N)SbCl<sub>4</sub>, (Bu<sub>4</sub>N)SbCl<sub>4</sub> и (Et<sub>4</sub>N)<sub>3</sub>SbCl<sub>6</sub></u>

В ряду соединений (Et<sub>4</sub>N)SbCl<sub>4</sub>, (Bu<sub>4</sub>N)SbCl<sub>4</sub> и (Et<sub>4</sub>N)<sub>3</sub>SbCl<sub>6</sub> максимальной интенсивностью флуоресценции обладает (Et<sub>4</sub>N)<sub>3</sub>SbCl<sub>6</sub> (табл. 1), анионная подрешетка которого построена из изолированных октаэдров [3]. Тетрамерное  $[Sb_4Cl_{16}]^{4-}$  или димерное  $[Sb_2Cl_8]^{2-}$  строение анионной подрешетки, в случае (Et<sub>4</sub>N)SbCl<sub>4</sub> [4] и (Bu<sub>4</sub>N)SbCl<sub>4</sub> [5], является причиной уменьшения интенсивности люминесценции иона сурьмы(III) из-за возрастания безызлучательных потерь в результате диссипации энергии электронного возбуждения по анионной подрешетки.

#### 4.5. Люминесцентные свойства галогенидов сурьмы(III) с анилином

Уникальной особенностью исследуемых комплексных соединений Sb(III) с анилином является возможность селективного возбуждения как собственной люминесценции Sb(III), так и люминесценции органической части молекулы. Понижение энергии возбуждающего света от 360 до 440 нм приводит к появлению в спектрах люминесценции (HAn)<sub>2</sub>SbCl<sub>5</sub>·(HAn)Cl·H<sub>2</sub>O и (HAn)<sub>2</sub>SbBr<sub>5</sub> полосы фосфоресценции катиона (HAn)<sup>+</sup> и увеличению ее интенсивности. Одновременно с этим уменьшается интенсивность полосы люминесценции Sb(III) вплоть до полного ее исчезновения (рис.2).

Сопоставление геометрического строения и спектральнолюминесцентных свойств показало, что большая степень искажения и полимерное строение аниона  $[SbBr_5]^{2-}$  ((HAn)<sub>2</sub>SbBr<sub>5</sub>) по сравнению с мономером (квадратной пирамидой)  $[SbCl_5]^{2-}$ ((HAn)<sub>2</sub>SbCl<sub>5</sub>·(HAn)Cl·H<sub>2</sub>O) приводит к уменьшению интенсивности люминесценции Sb(III) в (HAn)<sub>2</sub>SbBr<sub>5</sub> при 77 и ее полному отсутствию при 300 К в результате диссипации энергии электронного возбуждения по полимеру и больших структурных изменениях в



возбужденном состоянии. В свою очередь, наличие у соединений  $(HAn)_2SbCl_5\cdot(HAn)Cl\cdot H_2O$  и  $(HAn)_2SbBr_5$  эффективного  $\pi$  – стэкинг взаимодействия соседних катионов  $(HAn)^+$  может объяснить наличие фосфоресценции протонированного анилинового цикла.

#### <u>4.6 (HDphg)<sub>3</sub>SbCl<sub>6</sub>, (HDphg)<sub>3</sub>SbBr<sub>6</sub> и (HDphg)<sub>2</sub>SbI<sub>5</sub></u>

Максимальной интенсивностью люминесценции при 77 и 300 К среди всех исследуемых соединений Sb(III) обладают комплексы с Dphg (HDphg)<sub>3</sub>SbCl<sub>6</sub> и (HDphg)<sub>3</sub>SbBr<sub>6</sub>, анионная подрешетка в которых состоит из изолированных, практически идеальных октаэдров (табл. 1). Близость положения максимумов спектров возбуждения люминесценции иона Sb(III) (А полоса) в соединенииях (HDphg)<sub>3</sub>SbCl<sub>6</sub>, (HDphg)<sub>3</sub>SbBr<sub>6</sub> и (HDphg)Cl способствует эффективному переносу энергии электронного возбуждения с уровней органической части молекулы на люминесцентный <sup>3</sup>P<sub>1</sub> – уровень Sb(III) (рис. 3).

С другой стороны, наличие в спектре возбуждения люминесценции  $(HDphg)_2SbI_5$  низколежащей компоненты люминесцентного  ${}^3P_1$  – уровня

Рис. 3.

- а. Спектры возбуждения люминесценции (HDphg)Cl при 77 (1) и 300 К (2),
  (λ<sub>люм</sub> = 520 нм); спектры люминесценции (HDphg)Cl при 77 (3) и 300 К
  (4), (λ<sub>возб</sub> = 365 нм).
- б. Спектры возбуждения люминесценции (HDphg)<sub>3</sub>SbCl<sub>6</sub> при 77 (1) и 300 K (2) (λ<sub>люм</sub> = 580 нм); спектры люминес-ценции (HDphg)<sub>3</sub>SbCl<sub>6</sub> при 77 (3, λ<sub>возб</sub> = 365 нм) и 300 K (4, λ<sub>возб</sub> = 380 нм).
- в. Спектры возбуждения люминесценции (HDphg)<sub>3</sub>SbBr<sub>6</sub> при 77 (1) и 300 K(2), (\lambda\_{\mu\omegam} = 620 нм); спектры люминесценции (HDphg)<sub>3</sub>SbBr<sub>6</sub> при 77 (3) и 300 K (4), (\lambda\_{\mu\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\omega\o
- г. Спектры возбуждения люминесценции комплекса (HDphg)<sub>2</sub>SbI<sub>5</sub> (1, λ<sub>люм</sub>
  = 680 нм) и люминесценции (HDphg)<sub>2</sub>SbI<sub>5</sub> (2, λ<sub>603б</sub> = 450 нм) при 77 К.



(А полоса) обуславливает уменьшение интенсивности люминесценции иона сурьмы(III) при 77 К и ее полное отсутствие при 300 К (рис. 3). Подобная закономерность наблюдается и в случае комплексных соединений сурьмы(III) с 6-MeQ. Как известно, пересечение поверхностей потенциальной энергии низколежащего люминесцентного  ${}^{3}P_{1}$  – уровня и  ${}^{1}S_{0}$  – основного состояния s<sup>2</sup> – иона может приводить к эффективному тушению люминесценции в результате увеличения вероятности безызлучательных переходов (рис. 4) [6].

*Puc.* 4.

Строение анионной подрешетки и соответствующие им конфигурационно - координатные диаграммы s<sup>2</sup> – иона:

а. Островное строение анионной подрешетки с минимальными искажениями координационного полиэдра способствует высокой интенсивности люминесценции s<sup>2</sup> – иона.



б. Полимерное строение анионной подрешетки с большими искажениями координационного полиэдра способствует низкой интенсивности люминесценции s<sup>2</sup> – иона (или ее полному отсутствию).

Известно, что при фотовозбуждении  $s^2$  – ион переходит из основного в возбужденное состояние, характеризующееся более высокой симметрией [6]. Поэтому, чем меньше искажение окружения  $s^2$  – иона в основном состоянии, тем меньше энергии электронного возбуждения будет тратиться на реорганизацию структуры в возбужденном состоянии (при этом будут минимальны безызлучательные потери энергии электронного возбуждения и, следовательно, высокая интенсивность люминесценции) и наоборот [6]. Полимерное строение анионной подрешетки и высокая степень искажения способствует эффективной диссипации энергии электронного возбуждения сурьмы(III) по полимерной цепи и большим релаксационным потерям при фотовозбуждении (рис. 4).

Сопоставление данных РЭС и люминесцентной спектроскопии позволило выявить взаимосвязь между величиной Стоксова сдвига люминесценции и энергией связи Sb3d электронов в ряду соединений: SbCl<sub>6</sub>(HDphg)<sub>3</sub>, SbBr<sub>6</sub>(HDphg)<sub>3</sub> и SbI<sub>5</sub>(HDphg)<sub>2</sub>. Увеличение электронной плотности на атоме сурьмы(III) в гомологическом ряду исследуемых соединений коррелирует с батохромным сдвигом полосы  ${}^{3}P_{1} \rightarrow {}^{1}S_{0}$  – люминесцентного перехода иона сурьмы(III).

# 4.7. Фотохимическое поведение люминесцирующих композиций на основе

#### комплексных соединений сурьмы(III) и европия(III) в ПЭВД

Представляло интерес изучение фотохимического поведения соединений сурьмы(III) и европия(III) при совместном присутствии в полимерной матрице. Методом экструзии были получены четыре полимерные композиции на основе ПЭВД, активированного соединениями:  $Eu(NO_3)_3$ ·2Phen, (HDphg)\_3SbCl<sub>6</sub>, (HDphg)\_3SbCl<sub>6</sub> +  $Eu(NO_3)_3$ ·2Phen и (HDphg)\_3SbBr<sub>6</sub> +  $Eu(NO_3)_3$ ·2Phen, интенсивно люминесценцирующие в видимой области при 300 К. Результаты исследования фотохимического поведения полимерных композиций, активированных ионами сурьмы(III) и европия(III) свидетельствуют о том, что исследуемые соединения сурьмы(III) с Dphg обладают повышенной по сравнению с комплексом европия(III) фотоустойчивостью.

Анализ спектров возбуждения люминесценции композиции ПЭВД +  $(HDphg)_3SbBr_6 + Eu(NO_3)_3 \cdot 2Phen$  показывает существование эффективной сенсибилизации люминесценции европия(III) через резонансные уровни сурьмы(III). Правильное октаэдричесоке строение аниона  $[SbHal_6]^{3-}$  соединений  $(HDphg)_3SbCl_6$  и  $(HDphg)_3SbBr_6$  также может способствовать уменьшению релаксационных потерь при фотовозбуждении.

Исследованные полимерные композиции ПЭВД + (HDphg)<sub>3</sub>SbCl<sub>6</sub> + Eu(NO<sub>3</sub>)<sub>3</sub>·2Phen и ПЭВД + (HDphg)<sub>3</sub>SbBr<sub>6</sub> + Eu(NO<sub>3</sub>)<sub>3</sub>·2Phen предложены в качестве активаторов светотрансформирующих полимерных материалов.

<u>В пятой главе</u> рассмотрены спектрально-люминесцентные и термохромные свойства комплексных соединений теллура(IV) с азотсодержащими органическими катионами. Установлена связь между интенсивностью люминесценции и положением максимума  ${}^{3}P_{1} \leftarrow {}^{1}S_{0}$  перехода (А полоса) в спектрах диффузного отражения и спектрах возбуждения люминесценции соединений теллура(IV). Обнаружен обратимый линейный термохромизм в комплексных соединениях теллура(IV).

5.1. Спектрально-люминесцентные свойства комплексных соединений

#### теллура(IV) с азотсодержащими органическими катионами

Исследуемые соединения теллура(IV) (кроме (HGu)<sub>2</sub>TeBr<sub>6</sub>) люминесцируют при 77 К, часть из них Cs<sub>2</sub>TeCl<sub>6</sub>, (HGu)<sub>2</sub>TeCl<sub>6</sub>, (HDphg)<sub>2</sub>TeCl<sub>6</sub>, (HDip)<sub>2</sub>TeCl<sub>6</sub>, (HPhen)<sub>2</sub>TeCl<sub>6</sub>, (Et<sub>4</sub>N)<sub>2</sub>TeCl<sub>6</sub> проявляет люминесцентные свойства при 300 К. Максимальной интенсивностью люминесценции в ряду исследуемых соединений Te(IV) при 77 и 300 К обладает (Et<sub>4</sub>N)<sub>2</sub>TeCl<sub>6</sub> (табл. 2).

#### <u>5.1.1. Стоксов сдвиг</u>

Небольшой Стоксов сдвиг спектров люминесценции (около 7000 –  $8000 \text{ см}^{-1}$ ) соединений (HGu)<sub>2</sub>TeCl<sub>6</sub> (рис. 5), (HDphg)<sub>2</sub>TeCl<sub>6</sub>, (HDphg)<sub>2</sub>TeBr<sub>6</sub> и (HPhen)<sub>2</sub>TeCl<sub>6</sub> коррелирует с относительно низкой стереохимической активностью НЭП теллура(IV). При переходе от (HDphg)<sub>2</sub>TeCl<sub>6</sub> к (HDphg)<sub>2</sub>TeBr<sub>6</sub> происходит уменьшение асимметрии ближайшего окружения атома теллура(IV) и, следовательно, уменьшение стереоэффекта НЭП, что в свою очередь обуславливает уменьшение Стоксова сдвига люминесценции.

#### *Puc.* 5.

Спектр возбуждения люминесценции (1,  $\lambda_{люм} = 605$  нм) при 77 К, спектр люминесценции при 77 К (2,  $\lambda_{возб} = 425$  нм) и спектр люминесценции при 300 К (3,  $\lambda_{возб} = 365$  нм) комплексного соединения (HGu)<sub>2</sub>TeCl<sub>6</sub>.



5.1.2. Интенсивность люминесценции соединений теллура(IV)

Интенсивность люминесценции Te(IV) зависит от двух факторов:

- 1) геометрическое строение: тип анионной подрешетки, строение координационного полиэдра иона теллура(IV);
- положение А полосы в спектрах возбуждения или поглощения иона теллуpa(IV), энергия люминесцентного перехода (положение максимума спектра люминесценции).

Сравнение данных PCA и спектрально-люминесцентных свойств показало, что среди соединений (HGu)<sub>2</sub>TeHal<sub>6</sub> и (HDphg)<sub>2</sub>TeHal<sub>6</sub> (где Hal = Cl, Br) при 77 и 300 К максимальной интенсивностью люминесценции обладает (HGu)<sub>2</sub>TeCl<sub>6</sub> (табл. 2) с минимальными искажениями координационного полиэдра Te(IV) [7]. Однако, строение анионной подрешетки являтся не единственным фактором, определяющим наличие или отсутствие люминесценции Te(IV).

Действительно, интенсивность люминесценции также зависит от положения A полосы в спектрах возбуждения или поглощения иона Te(IV) (положение длинноволновой компоненты A полосы) (табл. 2). Бромотеллураты(IV), по сравнению с соответствующими хлоротеллуратами(IV), характеризуются меньшей интенсивностью люминесценции при 77 К (соединение (HGu)<sub>2</sub>TeBr<sub>6</sub> вообще не люминесцирует) и полным отсутствием люминесценции при 300 К, при этом спектры диффузного отражения бромотеллуратов(IV) при 77 и 300 К указывают на батохромное смещение по сравнению со спектрами диффузного отражения хлоротеллуратов(IV) (табл. 2, рис.6).

В рамках конфигурационно-координатной диаграммы [6] (рис. 4) выявлен механизм тушения люминесценции: наличие интенсивной длинноволновой компоненты в спектрах возбуждения люминесценции и спектрах поглощения (отражения) говорит об эффективном пересечении поверхностей потен-

16

|                                        | Край поглоще- |       | $\lambda_{\rm Jiom}$ , HM |       | I, отн. ед. |       |
|----------------------------------------|---------------|-------|---------------------------|-------|-------------|-------|
| Соединение                             | ния, нм       |       |                           |       |             |       |
|                                        | 77 K          | 300 K | 77 K                      | 300 K | 77 K        | 300 K |
| $Cs_2TeCl_6$                           | 460           | 500   | 590                       | 580   | 884         | 24    |
| Cs <sub>2</sub> TeBr <sub>6</sub>      | 540           | 600   | 680                       | -     | 218         | -     |
| (HGu) <sub>2</sub> TeCl <sub>6</sub>   | 450           | 510   | 605                       | 580   | 539         | 3     |
| $(HGu)_2 TeBr_6$                       | 560           | 620   | -                         | -     | -           | -     |
| (HAn) <sub>2</sub> TeCl <sub>6</sub>   | -             | -     | 655                       | -     | 50          | -     |
| (HAn) <sub>2</sub> TeBr <sub>6</sub>   | 530           | 600   | 625                       | -     | 16          | -     |
| (HLu) <sub>2</sub> TeCl <sub>6</sub>   | -             | -     | 585                       | -     | 582         | -     |
| (HDphg) <sub>2</sub> TeCl <sub>6</sub> | 450           | 490   | 620                       | 600   | 400         | 1     |
| (HDphg) <sub>2</sub> TeBr <sub>6</sub> | 530           | 580   | 665                       | -     | 44          | -     |
| (HDip) <sub>2</sub> TeCl <sub>6</sub>  | 460           | 490   | 625                       | 605   | 327         | 53    |
| (HDip) <sub>2</sub> TeBr <sub>6</sub>  | 540           | 600   | 645                       | -     | 10          | -     |
| (HPhen) <sub>2</sub> TeCl <sub>6</sub> | 460           | 510   | 595                       | 605   | 455         | 3     |
| (HPhen) <sub>2</sub> TeBr <sub>6</sub> | -             | -     | 670                       | -     | 24          | -     |
| $(Et_4N)_2TeCl_6$                      | -             | -     | 600                       | 580   | 1323        | 75    |
| $(Et_4N)_2TeBr_6$                      | -             | -     | 680                       | -     | 237         | -     |

Таблица 2. Спектральные характеристики соединений теллура(IV) при 77 К

циальной энергии основного ( ${}^{1}S_{0}$ ) и возбужденного ( ${}^{3}P_{1}$ ) состояний Te(IV), что приводит к резкому тушению (или полному отсутствию) люминесценции.

При сравнительном анализе спектрально-люминесцентных свойств соединений Sb(III) с Dphg и аналогичных комплексов Te(IV) с Dphg при 77 и 300 К, обнаружено, что интенсивность люминесценции (HDphg)<sub>2</sub>TeCl<sub>6</sub> и Рис. 6.



 $(HDphg)_2$ TeBr<sub>6</sub> при 300 K на два порядка ниже, чем у  $(HDphg)_3$ SbCl<sub>6</sub> и  $(HDphg)_3$ SbBr<sub>6</sub>. В спектре возбуждения люминесценции  $(HDphg)_2$ TeCl<sub>6</sub> и  $(HDphg)_2$ TeBr<sub>6</sub> длинноволновый максимум A полосы батохромно смещен относительно максимумов полос возбуждения люминесценции Dphg. Отсутствие эффективного перекрывания максимумов спектров возбуждения Dphg и  $(HDphg)_2$ TeCl<sub>6</sub> и  $(HDphg)_2$ TeBr<sub>6</sub> может являться причиной резкого уменьшения интенсивности люминесценции Te(IV) по сравнению с Sb(III) в аналогичных соединениях с Dphg при 77 и 300 K.

#### 5.2. Термохромные свойства комплексных соединений теллура(IV)

При октаэдрической координации  $s^2$  – иона структуры поверхности потенциальной энергии возбужденного  ${}^{3}P_{1}$  – уровня  $s^2$  – иона зависит от соотношения между спин – орбитальным взаимодействием и эффектом Яна – Теллера. Если влияние эффекта Яна – Теллера преобладает над эффективностью спин - орбитального взаимодействия, то в возбужденном состоянии происходит сильное взаимодействие оптических электронов  $s^2$  – иона с  $E_g$  и  $T_{2g}$  колебаниями кристаллической решетки кубической симметрии. При исследовании оптических свойств соединений Te(IV) при переходе от 300 к 100 К обнаружено плавное обратимое изменение окраски комплексов (обратимый линейный термохромизм): у Cs<sub>2</sub>TeCl<sub>6</sub>, (HGu)<sub>2</sub>TeCl<sub>6</sub>, (HDphg)<sub>2</sub>TeCl<sub>6</sub>, (HDip)<sub>2</sub>TeCl<sub>6</sub>, (HPhen)<sub>2</sub>TeCl<sub>6</sub> от ярко желтой до белой, у Cs<sub>2</sub>TeBr<sub>6</sub>, (HGu)<sub>2</sub>TeBr<sub>6</sub>, (HAn)<sub>2</sub>TeBr<sub>6</sub>, (HDphg)<sub>2</sub>TeBr<sub>6</sub>, (HDipy)<sub>2</sub>TeBr<sub>6</sub>, (HDphg)<sub>2</sub>TeBr<sub>6</sub> от красной до желтой (табл. 2, рис. 6).

Согласно [8] причиной наблюдаемого термохромного эффекта может являться температурная зависимость ян - теллеровского расщепления А полосы  $\Delta E$  в спектре поглощения комплексов:  $\Delta E \sim \sqrt{T}$ . Уменьшение асимметрии полосы А при понижении температуры и происходящее при этом уменьшение интенсивности длинноволновой компоненты полосы А в электронных спектрах поглощения приводит к изменению окраски комплексов Te(IV). Предварительные результаты исследования Раман спектров показали, что и у рассматриваемого класса соединений Te(IV) наблюдается относительно высокая интенсивность ян-теллеровских мод  $e_g$  и  $t_{2g}$ , нехарактерная для соединений с октаэдрической координацией [8].

Проведенное исследование спектроскопических свойств комплексных соединений Te(IV) с азотсодержащими органическими катионами выявило наличие у них люминесцентных и термохромных свойств. Обратимый линейный термохромизм соединений s<sup>2</sup> – ионов сопровождается, как показывают данные спектроскопии диффузного отражения, изменением асимметрии спектральной А полосы. В рамках конфигурационно-координатной модели рассмотрена зависимость интенсивности люминесценции исследуемых комплексов от спектрального положения А полосы: батохромное смещение полосы способствует тушению люминесценции соединений.

#### ВЫВОДЫ

- Синтезированы комплексные соединения Sb(III) и Te(IV) с азотсодержащими органическими катионами общей формулы A<sub>x</sub>SbHal<sub>y</sub> и A<sub>2</sub>TeHal<sub>6</sub> (где А катион, Hal = Cl<sup>-</sup>, Br<sup>-</sup>, I<sup>-</sup>; x = y 3), часть соединений получена впервые. Исследована взаимосвязь структуры, спектрально-люминесцентных, термохромных и фотохимических свойств соединений данного класса.
- Установлено, что факторами, способствующими интенсификации люминесценции s<sup>2</sup> – иона являются островное строение анионной подрешетки и слабые искажения координационного полиэдра Sb(III) и Te(IV).
- 3. В комплексных соединениях сурьмы(III) с анилином (HAn)<sub>2</sub>SbBr<sub>5</sub> и (HAn)<sub>2</sub>SbCl<sub>5</sub>·(HAn)Cl·H<sub>2</sub>O при 77 К впервые обнаружено селективное возбуждение люминесценции иона сурьмы(III) и фосфоресценции π – системы органического катиона (HAn)<sup>+</sup>. Анализ данных РСА и люминесцентной спектроскопии показал, что появлению фосфоресценции органического катиона (HAn)<sup>+</sup> может спосбствовать наличие С - Н ... π - стэкинг взаимодействия соседних катионов.
- В соединениях галогенидов сурьмы(III) и теллура(IV) с азотсодержащими органическими катионами обнаружен линейный реверсивный термохромизм, обусловленный изменением степени асимметрии спектральной А полосы s<sup>2</sup> – иона.
- 5. В рамках конфигурационно-координатной модели выявлен механизм тушения люминесценции в комплексных соединениях сурьмы(III) и теллура(IV): наличие длинноволновой компоненты А полосы в спектрах возбуждения люминесценции (диффузного отражения) говорит об эффективном пересечении потенциальной энергии основного (<sup>1</sup>S<sub>0</sub>) и возбужденного (<sup>3</sup>P<sub>1</sub>) состояний s<sup>2</sup> – иона и диссипации энергии электронного возбуждения.

6. Обнаружен эффективный перенос энергии электронного возбуждения с уровней сурьмы(III) на резонансные уровни европия(III) в люминесцирующей композиции на основе ПЭВД, содержащей комплексные соединения сурьмы(III) и европия(III). Комплексные соединения сурьмы(III) с N,N'-дифенилгуанидином, интенсивно люминесцирующие при комнатной температуре и обладающие повышенной фотоустойчивостью, предложены в качестве активаторов светотрансформирующих полимерных материалов.

#### СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ

- DeHaven P.W., Jacobson R.A. Pyridimium tetrabromoantimonate(III) C<sub>5</sub>H<sub>5</sub>NHSb<sup>III</sup>Br<sub>4</sub> // Cryst. Struct. Comm. - 1976. - Vol. 5. - P. 31 - 34.
- Hendrixson T.L., ter Horst M.A., Jacobson R.A. Preparation and crystal structure of pyridimium tetraiodoantimonate(III) an infinite chain structure // J. Crystallographic and Spectroscopic Research. 1990. Vol. 20, № 2. P. 105 108.
- 3. Sobczyk L., Jakubas R., Zaleski J. Self-assembly of Sb(III) and Bi(III) halocoordinated octahedra in salts of organic cations. Structure, properties and phase transitions // Polish. J. Chem. - 1997. - Vol. 71, № 3. - P. 265 - 300.
- Zaleski J. Crystal structure and X-ray investigation of phase transitions of tetraethylammonium tetrachloroantimonate N(C<sub>2</sub>H<sub>5</sub>)<sub>4</sub>SbCl<sub>4</sub> // Ferroelectrics. -1997. - № 1 - 4. - P. 71 - 79.
- Ensinger U., Schwarz W., Schmidt A. Tetraalkylammonium tetrachloroantimonate(III). Struktur und Schwingungsspektren // Z. Naturforsch. Teil B. -1982. - Vol. 37, № 12. - P. 1584 - 1589.
- 6. Blasse G. Luminescence of inorganic solids: from isolated centeres to concentrated systems // Prog. Solid St. Chem. - 1988. - Vol. 18, № 2. P. 79 – 171.
- 7. Waskowska A., Janczak J., Czapla Z. Crystal structure of guanidine hexachlorate tellurate(IV) // J. Alloys and Compounds. - 1993. - Vol. 196, № 1 - 2. - P.

255 - 257.

- 8. Stufkens D.J. Dynamical Jahn Teller Effect in the Excited States of SeCl<sub>6</sub><sup>2-</sup>, SeBr<sub>6</sub><sup>2-</sup>, TeCl<sub>6</sub><sup>2-</sup>, TeBr<sub>6</sub><sup>2-</sup>. Interpretation of electronic absorption and Raman spectra // Rec. Trav. Chim. 1970. Vol. 89, № 11. Р. 1185 1201. ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ
- Мирочник А.Г., Петроченкова Н.В., Карасев В.Е., Сторожук Т.В., Лифар Л.И. Синтез, строение и люминесцентные свойства комплексных соединений Sb (III) с N, N'- дифенилгуанидином // Координац. химия. - 2001. -Т. 27, № 11. - С. 831 - 833.
- Петроченкова Н.В., Сторожук Т.В., Мирочник А.Г., Карасев В.Е. Синтез, строение и люминесцентные свойства комплексных соединений сурьмы (III) с четвертичными аммонийными основаниями // Координац. химия. -2002. - Т. 28, № 7. - С. 501 - 505.
- Сторожук Т.В., Удовенко А.А., Мирочник А.Г., Петроченкова Н.В., Карасев В.Е. Синтез и люминесценция комплексов хлоридов сурьмы (III) с бензилпиридином. Кристаллическая структура бис-2-бензилпиридиния пентахлороантимоната // Координац. химия. 2002. Т. 28, № 3. С. 185 192.
- Мирочник А.Г., Буквецкий Б.В., Сторожук Т.В., Карасев В.Е. Кристаллическая структура, люминесцентные и термохромные свойства комплексов галогенидов теллура (1V) с N,N-дифенилгуанидином // Электронный журнал "Исследовано в России" http://zhurnal.ape.relarn.ru/articles/2002/162.pdf
- Мирочник А.Г., Буквецкий Б.В., Сторожук Т.В., Карасев В.Е. Кристаллическая структура, люминесцентные и термохромные свойства комплексов галогенидов теллура(IV) с N,N'-дифенилгуанидином // Журн. неорган. химии. 2003. Т. 48, № 4. С. 582 591.

- Мирочник А.Г., Удовенко А.А., Сторожук Т.В., Карасев В.Е., Буквецкий Б.В., Синтез и люминесценция комплексов галогенидов мышьяка(III) и сурьмы(III) с N,N'-дифенилгуанидином. Кристаллические структуры трис-(N,N'-дифенилгуанидиния) гексахлоро- и гексабромоарсенатов(III) и антимонатов(III) // Журн. неорган. химии. 2003. Т. 48, № 7. С. 1067 1078.
- 7. Сторожук Т.В., Буквецкий Б.В., Мирочник А.Г., Карасев В.Е. Синтез, строение и обратимый термохромизм гексабромотеллурата(IV) гуанидиния // Журн. структур. химии. 2003. Т. 44, № 5. С. 968 972.
- Сторожук Т.В., Мирочник А.Г., Петроченкова Н.В., Карасев В.Е. Сенсибилизация люминесценции сурьмы(III) с 6-метилхинолином в спектральной области А полосы // Опт. спектр. - 2003. - Т. 94, № 6. - С. 985 - 988.
- Буквецкий Б.В., Сторожук Т.В., Мирочник А.Г., Петроченкова Н.В., Карасев В.Е. Синтез, кристаллическая структура и люминесцентные свойства комплексов галогенидов сурьмы(III) с 6-метилхинолином // Журн. неорган. химии. 2004. Т. 49, № 1. С. 47 54.
- Мирочник А.Г., Седакова Т.В., Николенко Ю.М., Карасев В.Е. Электронное строение и люминесцентные свойства комплексных соедиений сурьмы(III) с азотсодержащими внешнесферными органическими катионами // Журн. структур. химии. - 2006. – Т. 47, № 2. - С. 254 - 258.
- 11. Мирочник А.Г., Жихарева П.А., Седакова Т.В., Карасев В.Е Фотохимическое и фотофизическое поведение люминесцирующих композиций на основе комплексных соединений сурьмы(III) и европия(III) в полиэтилене высокого давления // Журн. физич. химии. - 2007. - № 2. - С. 360 – 363.
- Седакова Т.В., Мирочник А.Г., Карасев В.Е. Строение и люминесцентные свойства комплексных соединений сурьмы(III) // Оптика и спектроскопия. - 2008. - Т. 105, № 4. - С. 584 - 590.