На правах рукописи

Вялый Игорь Евгеньевич

ГИДРОФОБНЫЕ ПОКРЫТИЯ НА СПЛАВАХ АЛЮМИНИЯ И МАГНИЯ, ФОРМИРУЕМЫЕ С ИСПОЛЬЗОВАНИЕМ ПЛАЗМЕННОГО ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ

1.4.4. Физическая химия

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Владивосток - 2021

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН)

Научный руководитель:	кандидат химических наук Егоркин Владимир Сергеевич					
Официальные оппоненты:	доктор физико-математических наук					
	Грузнев Димитрий Вячеславович					
	(Федеральное государственное бюджетное учреждение науки Институт автоматики и процессов управления ДВО РАН, гл.н.с. лаборатории технологии полупроводников и диэлектриков)					
	доктор технических наук, профессор					
	Шаталов Валерий Константинович					
	(Федеральное государственное бюджетное образовательное учреждение высшего образования Московский государственный технический университет имени Н.Э. Баумана, Калужский филиал, зав. кафедрой материаловедение и химия)					
Ведущая организация:	Федеральное государственное бюджетное образовательное учреждение высшего образования Уфимский государственный авиационный технический университет (УГАТУ), г. Уфа.					

Защита состоится «____» _____2021 г. в «___» часов на заседании диссертационного совета Д 24.1.145.01 при Институте химии ДВО РАН по адресу: г. Владивосток, проспект 100-летия Владивостока, 159, ИХ ДВО РАН.

С диссертацией можно ознакомиться в центральной научной библиотеке ДВО РАН.

Автореферат разослан «__»___2021 г.

Автореферат размещен на сайте ВАК РФ «__»___2021 г.

Ученый секретарь

диссертационного совета к.х.н.

О.В. Бровкина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Алюминиевые и магниевые сплавы в качестве конструкционных и функциональных материалов являются одними из наиболее востребованных в различных областях промышленности, например, таких как автомобильная, аэрокосмическая, электронная и др. Вместе с тем два существенных недостатка этих материалов, а именно низкое сопротивление коррозии и износу, существенно ограничивают область их практического использования. При определенных условиях эксплуатации сплавов требуется их дополнительная и надежная защита. Высокая скорость коррозии алюминиевых и магниевых сплавов вследствие образования гальванических пар из-за разности потенциалов присутствующих в сплаве вторичных фаз или посторонних включений значительно снижает срок службы функциональных и конструкционных элементов и приводит к необходимости их ремонта или замены.

Для решения этих проблем многими исследователями и научными группами за последние десятилетия были предприняты попытки улучшить механические и антикоррозионные свойства алюминиевых и магниевых сплавов.

Одним из способов, позволяющих значительно повысить механические и коррозионные характеристики обрабатываемых материалов является создание на их поверхности покрытий путем плазменного электролитического оксидирования (ПЭО). Метод ПЭО, активно развиваемый в работах, проводимых в Институте химии ДВО РАН, обеспечивает формирование многофункциональных слоев для защиты металлов и сплавов от воздействия внешней агрессивной среды. ПЭО-слои образуются в результате протекания плазменных микроразрядов на границе раздела обрабатываемого материала с электролитом и состоят из окисленных форм элементов металла/сплава и компонентов электролита.

Литературные данные свидетельствуют модификация 0 том, ЧТО поверхности коррозионно-активных легких сплавов, придающая ИМ гидрофобные свойства, значительно увеличивает их коррозионную защиту. ПЭО-слоев Высокая адгезия к металлической подложке, хорошие антикоррозионные свойства и развитая поверхность делают такие слои перспективным объектом для модификации, в том числе путем создания композиционных покрытий с использованием гидрофобных агентов и наночастиц. Формирование гидрофобных (ГФ) и супергидрофобных (СГФ) покрытий, изучение их электрохимического поведения представляют собой важные этапы создания противокоррозионной защиты материалов, эффективной не только в атмосферных условиях, но и в агрессивной среде.

Разработка перспективных способов формирования на поверхности алюминиевых и магниевых сплавов ГФ и СГФ покрытий, обладающих высокими антикоррозионными свойствами, позволит значительно расширить область практического использования этих материалов в разных отраслях промышленности.

исследования обусловлена необходимостью Актуальность темы разработки новых перспективных материалов и методов модификации сплавов поверхности алюминиевых И магниевых с целью создания многофункциональных антикоррозионных, антифрикционных покрытий, способных расширить область практического применения этих важных для промышленного использования функциональных И конструкционных материалов. Данное направление исследований является приоритетным в развитии современной мировой науки о материалах.

Степень разработанности темы исследования. Исходя из анализа литературных данных, можно сделать вывод о том, что, несмотря на многообразие способов формирования гидрофобных и супергидрофобных поверхностных слоёв на магниевых и алюминиевых сплавах, разработанные подходы не обеспечивают долговременной защиты от коррозии, а также от механических повреждений.

В литературе недостаточно полно освещены исследования свойств покрытий, сформированных на алюминиевом сплаве с использованием поляризационного сигнала с малой длительностью импульсов тока. В частности, остается открытым вопрос о влиянии коэффициента заполнения поляризующего сигнала на формирование ПЭО-покрытий с использованием источников тока, генерирующих импульсы длительностью менее 10 мкс.

Цель данной диссертационной работы заключается в разработке способов формирования на сплавах алюминия и магния композиционных ГФ и

2

СГФ покрытий, обладающих высокими антикоррозионными свойствами и в изучении характера и особенностей их взаимодействия с хлоридсодержащей средой, а также в исследовании влияния применяемых режимов поляризации с использованием прямоугольных импульсов длительностью 5 мкс на свойства формируемых гетерооксидных структур для создания оптимальных ПЭО-покрытий для последующей гидрофобизирующей их обработки.

Для достижения этой цели необходимо было решить следующие задачи:

1. Разработать устойчивые электролитические системы, обеспечивающие образование на сплавах алюминия и магния покрытий с высокими противокоррозионными характеристиками.

2. Разработать режимы формирования ПЭО-слоев как основы для создания гидрофобных покрытий на сплавах алюминия АМг3 и магния МА8.

3. Установить взаимосвязь между условиями формирования и химическим составом, морфологией, электрохимическими и механическими свойствами композиционных покрытий на сплавах алюминия и магния.

Научная новизна:

1. Разработаны способы формирования антикоррозионных гидрофобных и супергидрофобных композиционных покрытий на поверхности алюминиевых и магниевых сплавов, включающие в себя ПЭО-обработку с последующей модификацией гидрофобным материалом.

2. Впервые отработаны условия подготовки ПЭО-слоев на алюминиевых и магниевых сплавах для последующей модификации покрытий гидрофобным агентом и исследована морфология, коррозионные, электрохимические свойства, смачиваемость формируемых композиционных покрытий.

3. Изучено влияние формы и частоты поляризующего сигнала, используемого при плазменном электролитическом оксидировании, на свойства получаемых покрытий на сплаве алюминия АМг3 в электролитах, содержащих органические ($C_4H_4O_6K_2\cdot 0,5H_2O$) и неорганические (NaF, Na₂MoO₄·2H₂O, Na₂B₄O₇·10H₂O, Na₃PO₄·12H₂O) компоненты.

4. Установлена взаимосвязь между значением коэффициента заполнения поляризующего сигнала, используемого при плазменном электролитическом

3

формировании покрытий на сплаве алюминия АМг3, и электрохимическими и механическими свойствами получаемых слоев.

Теоретическая и практическая значимость:

Полученные в ходе выполнения диссертационной работы научные результаты расширяют теоретические представления о возможностях формирования защитных антикоррозионных ГФ и СГФ покрытий на поверхности металлов и сплавов.

Разработаны и оптимизированы режимы создания базового ПЭО-слоя для последующей модификации гидрофобным агентом, практически значимые способы формирования на основе ПЭО-слоя композиционных ГФ и СГФ покрытий на магниевых и алюминиевых сплавах, существенным образом (до 7 порядков величины) снижающие плотность тока коррозии в хлоридсодержащей среде.

Формируемые ПЭО-покрытия перспективны для промышленного использования и могут расширить область применения алюминиевых и магниевых сплавов в аэрокосмической, автомобильной и других отраслях промышленности за счет значительного увеличения степени защиты изделий от коррозии, путем повышения гидрофобности и создания приемлемых для практики механических свойств поверхностных слоев.

Разработан способ формирования ПЭО-покрытий в биполярном режиме при длительности поляризующего сигнала 5 мкс, обеспечивающий необходимое для промышленного использования улучшение коррозионных и механических свойства ПЭО-покрытий.

Методология и методы исследования. В диссертационной работе использовались различные методы и методики исследования поверхности, в том числе рентгенофазовый анализ, сканирующая электронная и оптическая микроскопия, электронно-зондовый микроанализ, метод потенциодинамической поляризации и электрохимической импедансной спектроскопии, методы адгезионных и трибологических испытаний, измерения углов смачивания.

Основные положения, выносимые на защиту:

– способы формирования на сплавах алюминия АМгЗ и магния МА8, с использованием метода плазменного электролитического оксидирования и раствора гидрофобного агента, защитных антикоррозионных покрытий, обладающих высокими ГФ и СГФ свойствами и стабильностью; – результаты исследования влияния морфологии и состава слоев, получаемых плазменным электролитическим оксидированием, на защитные характеристики формируемых ГФ и СГФ покрытий на магниевом и алюминиевом сплавах;

 установленная взаимосвязь формы поляризующего сигнала ПЭО с морфологией и защитными свойствами формируемых покрытий.

Апробация работы

Общее содержание диссертации И основные экспериментальные результаты были представлены на следующих научных, научно-технических конференциях: научно-технический конкурс среди студентов и аспирантов «Флот России» (Владивосток, Россия, 2013); Second Asian School-Conference on Physics and Technology of Nanostructured Materials (ASCO-NANOMAT, Vladivostok, Russia, 2013); Х Российская ежегодная конференция молодых «Физико-химия научных сотрудников И аспирантов И технология неорганических материалов» (ИМЕТ РАН, Москва, Россия, 2013); VI Международная научная конференция «Современные методы в теоретической и экспериментальной электрохимии» (Иваново, Россия, 2014); XV International Conference on Surface Forces (Verbilki, Moscow region, Russia, 2014); Conference & Exhibition «Science and Applications of Thin Films» (Izmir, Turkey, 2014); Third Asian School-Conference on Physics and Technology of Nanostructured Materials (ASCO-NANOMAT, Vladivostok, Russia, 2015); The European Corrosion Congress (Eurocorr 2015, Graz, Austria, 2015); IX научная сессия-конкурс молодых ученых Института химии ДВО РАН, посвященная 100-летию чл.-корр. АН СССР Ю.В. Гагаринского (Владивосток, Россия, 2015); 5th International Conference «Electrochemical and plasma electrolytic modification of metal surfaces» (Kostroma, Russia, 2016); 10th International Symposium on Electrochemical Impedance Spectroscopy (Toxa. Spain, 2016): III международная конференция «Фундаментальные аспекты коррозионного материаловедения и защиты металлов от коррозии» (Москва, Россия, 2016); International Conference on Metamaterials and Nanophotonics (METANANO, Vladivostok, Russia, 2017); Fourth Asian School-Conference on Physics and Technology of Nanostructured Materials (ASCO-NANOMAT, Vladivostok, Russia, 2018); The Tenth International Conference on Materials Technologies and Modeling (MMT-2018, Ariel, Israel, 2018); XX

международная научно-практическая конференция «Химия и химическая технология в XXI веке» (Томск, Россия, 2019); VIII международная конференция «Наноматериалы и технологии» (Улан-Удэ, Россия. 2019); Asian Symposium on Advanced Materials (ASAM-7, Beijing, China, 2019); XI Научная сессия-конкурс молодых ученых Института химии ДВО РАН (Владивосток, Россия, 2019); Fifth Asian School-Conference on Physics and Technology of Nanostructured Materials (ASCO-NANOMAT, Vladivostok, Russia, 2020).

Публикации. По результатам выполненных исследований опубликовано 33 печатных работы, в том числе 11 статей в рецензируемых журналах, входящих в перечень ВАК, 20 материалов конференций и 2 патента РФ.

Личный вклад автора. Соискатель проанализировал литературные данные по теме исследования, провел основную часть экспериментов, обработал и проанализировал полученные экспериментальные данные, участвовал в обсуждении полученных результатов и написании научных статей, выступал с докладами на конференциях. Часть экспериментальных исследований проведена при участии сотрудников Федерального государственного бюджетного учреждения науки Института химии ДВО РАН.

Достоверность полученных результатов обеспечена применением приборов аттестованных измерительных И апробированных методик, использованием взаимодополняющих методов исследования, соблюдением принципа при анализе И интерпретации комплексного подхода экспериментальных данных, воспроизводимостью результатов, применением статистических методов оценки погрешностей при обработке данных экспериментов.

Соответствие диссертации паспорту научной специальности. Диссертация соответствует специальности 1.4.4. Физическая химия в пунктах: 5 (Изучение физико-химических свойств систем при воздействии внешних полей, а также в экстремальных условиях высоких температур и давлений) и 11 (Физико-химические основы химической технологии).

Структура и объем диссертационной работы. Диссертация состоит из введения, четырех глав, заключения и списка литературы. Диссертационная работа изложена на 149 страницах машинописного текста, содержит 16 таблиц, 59 рисунков. Список литературы включает 202 наименования.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертационной работы, сформулирована ее цель, указана степень разработанности темы исследования. Отражены задачи исследования, отмечены научная новизна, практическая и теоретическая значимость диссертации, представлены методология и методы исследования, изложены основные положения, выносимые на защиту.

В первой главе представлен литературный обзор, в котором освещены наиболее эффективные способы, направленные на модификацию поверхности магниевых и алюминиевых сплавов для улучшения антикоррозионных, механических свойств, включая обеспечение стабильной защиты от коррозии при длительном контакте с агрессивной средой за счет формирования супергидрофобных покрытий.

Несмотря на большое количество работ, посвященных данной тематике, остаются неосвещенными многие вопросы, связанные с обеспечением стабильного эффекта супергидрофобности поверхностных слоев и сохранением многомодальной (многоуровневой) шероховатости в местах механического повреждения, а также вытекающими отсюда проблемами долговременной защиты от коррозии.

Вместе с тем исследования, направленные на создание оксидных покрытий, служащих основой для нанесения гидрофобного агента, без сомнения, имеют значимость и перспективность, поскольку установление закономерностей влияния коэффициента заполнения и формы короткоимпульсного сигнала на формирование, структуру и химический состав поверхностных слоев позволяет повысить равномерность состава, толщины покрытия и ИХ сократить энергопотребление, увеличить беспористую часть покрытий, обеспечивающую высокие антикоррозионные свойства, а также повысить гидрофобность и прочность поверхностных слоев. Таким образом, совокупность данных мер способна обеспечить бо́льшую востребованность практическую обрабатываемым магниевым и алюминиевым сплавам.

7

Во второй главе представлено развернутое описание оборудования, используемого для исследований в рамках данной кандидатской диссертации, определены объекты И методы исследования, В частности способы формирования микротрубчатых и практически беспористых покрытий на поверхности сплава алюминия АМгЗ и низкопористых ПЭО-слоев на сплаве магния МА8. Представлено схематическое описание электролитической ячейки и установок для оксидирования, в том числе и с короткоимпульсным источником тока. Описаны условия подготовки ПЭО-слоев на алюминиевых и магниевых сплавах (кипячение в воде и жидком стекле соответственно, обработка ультрафиолетовым излучением в среде озона), приводящие к увеличению числа хемосорбционно-активных центров, обеспечивающих на поверхности материала химическую связь с гидрофобным агентом. Представлено описание комплекса научного оборудования для анализа состава, морфологии, электрохимических и механических свойств покрытий и материалов. Описана методика измерения контактного угла и угла скатывания для исследуемых материалов.

В третьей главе представлены результаты исследований, направленных на формирование на сплаве алюминия АМгЗ композиционных покрытий с использованием метода ПЭО и последующего нанесения ГФ агента с целью снижения смачиваемости получаемых покрытий коррозионной средой. Модификация предварительно сформированных ПЭО-слоев в гальваностатическом режиме в течение 150 с заключалась в обработке раствором ГФ агента (метокси-{3-[(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-пентадекафтороктил)окси]пропил}-силана (MAF)),

дисперсией также а наноразмерных частиц диоксида кремния В ГΦ агенте (рисунок 1). Проведенный литературный позволил анализ, предположить, что У

покрытий, полученных нанесением суспензии SiO₂ в ГФ агенте, гидрофобный

агент обеспечивает химическую связь между наночастицами в агрегатах, а также между наночастицами и ПЭО-слоем за счет трех реакционноспособных концевых группы –Si(OCH₃)₃.

Для оценки влияния условий осаждения ГФ агента на ПЭО-покрытие, образцы были разделены на две группы. Образцы в первой группе не обработке, дополнительной второй подвергались a BO группе перед формированием СГФ слоя были обработаны кипячением в бидистиллированной воде в течение 60 мин для увеличения на поверхности числа хемосорбционноактивных центров, т.е. концентрации ОН-групп и герметизации микротрубок, благодаря формированию поверхностного плотного слоя, согласно данным рентгенофазового анализа (РФА), состоящего из гиббсита (рисунок 2 кривая 2). РФА-анализ исходного ПЭО-покрытия установил наличие в его составе только

Рисунок 2 – Рентгеновские дифрактограммы для образца без покрытия (АМгЗ), исходного ПЭО-покрытия (1) и подвергнутого кипячению (2)

γ-Al₂O₃ (рисунок 2 кривая 1).

Перед обработкой ГФ агентом, кипяченные и без кипячения образцы обрабатывали в среде озона УФ-излучением в течение 50 мин, что обеспечивало очистку поверхности и увеличение концентрации хемосорбционноактивных центров.

Представленные на рисунке 3 изображения сканирующей

электронной микроскопии (СЭМ) поверхности и поперечных шлифов покрытий первой группы образцов позволяет заключить, что формируемые СГФ слои копируют макрорельеф ПЭО-слоя, значительные различия проявляются лишь на микро- и наноуровнях. ПЭО-слои состоят из микротрубок, сформированных на подложке сплава алюминия АМгЗ. Такая структура характерна для слоев, образованных в тартрат-содержащих электролитах на ранних стадиях оксидирования.

Рисунок 3 – СЭМ-изображения поверхности и поперечных шлифов покрытий: а, г – ПЭО-покрытие, б, д – ГФ покрытие, в, е – СГФ покрытие

Процесс самоорганизации наночастиц В дисперсии, содержащей наноразмерные частицы диоксида кремния, гидрофобный агент и нелетучую обезвоженную дисперсионную среду, приводит к осаждению и агрегации наночастиц аэросила (SiO₂), формируя многомодальную шероховатость (рисунок 3 в, е). Наличие большего количества кремния, определенного методом энергодисперсионного анализа (таблица 1), в составе

СГФ покрытия, подтверждает предположение о происхождении и характере этих агрегатов.

Таблица 1 – Элементный состав ПЭО-покрытия, ГФ и СГФ слоев

Образац	Содержание элементов, масс. %						
Образец	С	0	F	Al	Si	K	
ПЭО-покрытие	8,3 ± 1,7	$48,9 \pm 0,9$	$3,4 \pm 0,7$	$38,4 \pm 0,3$	$0,3 \pm 0,1$	0,7 ± 0,1	
ГФ покрытие	14,2 ± 3,6	29,7 ± 1,6	$13,4 \pm 1,1$	39,6 ± 0,5	$2,5 \pm 0,2$	0,6±0,1	
СГФ покрытие	29,7 ± 1,6	17,8 ± 0,9	$13,4 \pm 0,7$	28,4 ± 0,6	$10,7 \pm 0,4$	_	

Примечание. Прочерк означает отсутствие данное химического элемента в составе покрытий.

СЭМ-изображения ГФ и СГФ слоев второй группы образцов демонстрируют, что их поверхности значительно различаются с исходным ПЭОслоем (рисунок 4 а, г), т.е. имеют более многомодальный рельеф, но не обладают однородной структурой поверхности (рисунок 4 в). В тоже время, так как ГФ агент осаждается на поверхность образца толщиной в один монослой, наблюдаемые

СΓФ морфологии различия образцов покрытий первой (рисунок 3 в, е) от второй группы, (рисунок 4 в. г), произошли результате В предварительного кипячения.

Строение исходного ПЭОпокрытия способствует при контакте с водной средой формированию границы раздела, на которой присутствуют закрепленные на неровностях пузырьки воздуха.

время,

нельзя

Рисунок 4 – СЭМ-изображения поверхности образцов с ГФ (а, б) и СГФ (в, г) покрытиями на ПЭОслое, подвергнутом кипячению, а затем обработанном УФ-излучением в среде озона

вытеснение захваченного воздуха при длительном контакте исключать поверхности с жидкой фазой и ее проникновение внутрь микротрубок. Тогда коррозионная защита ГФ и СГФ покрытий будет значительно зависеть от барьерных параметров беспористого слоя ПЭО-покрытия. Однако сравнение морфологии исходных (рисунок 3 в, г) и кипяченных образцов (рисунок 4 в, е) позволяет сделать предположение, что незакрытые микротрубки с осаженным ГФ агентом и наночастицами SiO₂ способны намного дольше сохранять пузыри воздуха, чем микротрубки, закрытые непроницаемым слоем гидроксида алюминия, формируемого при кипячении. На поверхности образцов с ГФ и СГФ покрытиями, полученными на ПЭО-слоях после кипячения, наблюдаются неоднородности (рисунок 4 а, в), которые увеличивают площадь контакта с следствие, обуславливают коррозионным раствором И, как снижение сопротивления, в сравнении с не подвергнутыми кипячению образцами.

B

тоже

Следовательно, в условиях потенциодинамической поляризации ГФ и СГФ покрытия первой группы демонстрируют большую устойчивость (рисунок 5) в сравнении с покрытиями второй группы (рисунок 6): рассчитанные по

11

образцов из алюминиевого сплава без покрытия (1) и со следующими слоями: ПЭО-покрытие (2), ГФ покрытие (3) и СГФ покрытие (4)

поляризационным кривым значения плотности тока коррозии (рисунок 5), для образца с СГФ покрытием, равно 4,6 \cdot 10⁻¹⁴ A/см², что на более чем 7 порядков меньше, чем для образца без покрытия (6,1 \cdot 10⁻⁷ A/см²), на 2 порядка меньше, чем для ГФ покрытия (4,8 \cdot 10⁻¹² A/см²), а также практически на 4 порядка ниже, чем для базового ПЭО-слоя (3,5 \cdot 10⁻¹⁰ A/см²).

Плотность тока коррозии у образца с поверхностным слоем после кипячения уменьшилась более чем в 1,5 раза ($j_{\kappa} = 1,9 \cdot 10^{-10} \text{ A/cm}^2$), в сравнении с исходным ПЭО-слоем ($j_{\kappa} = 3,5 \cdot 10^{-10} \text{ A/cm}^2$) и более чем на 4 порядка в сравнении с незащищенным сплавом алюминия ($j_{\kappa} = 6,7 \cdot 10^{-7} \text{ A/cm}^2$). Это свидетельствует о запечатывании микротрубок образующимся гидроксидом алюминия (рисунок 4)

Рисунок 6 – Поляризационные кривые для образцов из алюминиевого сплава без покрытия (1) и со следующими слоями, подвергнутыми кипячению: ПЭО-покрытие (2), ГФ покрытие (3) и СГФ покрытие (4)

и, как следствие, улучшении коррозионных свойств ПЭОпокрытия (рисунок 6 кривая 2).

Исследование смачиваемости по методу сидячей капли 3 % раствора NaCl с покрытиями первой группы образцов (без кипячения в воде) показало, что исходные ПЭО-слои гидрофильны, угол смачивания равен (46 ± 3)°. Образцы с ГФ покрытием на ПЭО-слоях без предварительного

кипячения, характеризуются углом смачивания $(160 \pm 7)^{\circ}$. Однако угол

скатывания для ГФ покрытия равен $18 \pm 9^{\circ}$, что говорит о неоднородной многомодальной шероховатости такого покрытия. Участки поверхности с менее выраженной иерархической структурой по шероховатости, выполняют роль якоря, удерживающего каплю при наклоне. Также на супергидрофобность покрытий, полученных нанесением ГФ агента с наночастицами SiO₂, указывает более высокий угол смачивания $(165 \pm 3)^{\circ}$ и снижение более чем в 2 раза угла скатывания $(8 \pm 3)^{\circ}$ по сравнению с ГФ покрытиями $(18 \pm 9)^{\circ}$.

Анализ смачиваемости ПЭО-покрытия второй группы (рисунок 1) показал, что кипячение приводит к снижению контактного угла от $(46 \pm 3)^{\circ}$ до $(36 \pm 3)^{\circ}$. После обработки УФ-излучением в среде озона и нанесения ГФ агента увеличенное количество гидроксильных групп в процессе кипячения ПЭО-покрытий способствует более плотному осаждению ГФ агента, что в свою очередь обеспечивает увеличение угла смачивания до $(162 \pm 2)^{\circ}$ и снижение угла скатывания до $(14 \pm 2)^{\circ}$. Осаждение ГФ агента с наночастицами SiO₂ еще больше увеличило контактный угол $(166 \pm 3)^{\circ}$ и уменьшило угол скатывания $(12 \pm 3)^{\circ}$ за счет формирования многомодального рельефа поверхности. Тем не менее, угол скатывания для них выше 10° . Вероятно, на СГФ слое, скатывающаяся капля, попадая на участки с неоднородной шероховатостью (рисунок 4 в), затормаживается и, как следствие, увеличивается угол наклона образца, при котором происходит скатывание капли.

Аналогично алюминиевому сплаву АМгЗ было проведено исследование смачиваемости ПЭО-покрытия на сплаве магния МА8, которое показало, что у него угол смачивания составляет (46 ± 3)°. Поскольку ГФ и СГФ состояния поверхности достигаются хемосорбцией гидрофобного агента на поверхностные ОН-группы, исходные ПЭО-покрытия, сформированные в биполярном режиме в течение 600 с при увеличении со скоростью 0,45 В/с анодного напряжения до 300 В и постоянном катодном напряжении 30 В, подвергались предварительному кипячению в растворе Na₂O–SiO₂–H₂O в течение 15 мин для увеличения поверхностной плотности хемосорбционно-активных центров. Увеличение плотности поверхностных гидроксильных групп в процессе кипячения косвенно подтверждается падением угла смачивания покрытия до значения (22 ± 7)° после

выполнения данной операции. Гидрофобизующую обработку поверхности выполняли двумя способами. При первом, для получения гидрофобного покрытия образец погружался на 2 ч в 2 % раствор гидрофобного агента, находящегося в 99 % декане, с последующей промывкой в ультразвуковой ванне однократно 99,9 % этиловым спиртом и трехкратно – дистиллированной водой в течение 5 мин. В результате хемосорбции гидрофобного агента на ПЭО-слое образовывалось гидрофобное покрытие. Угол смачивания образца возрастал до (131 ± 2)°. При втором способе обработки СГФ покрытия, характеризуемые углом смачивания (166 ± 3)° и углом скатывания (5 ± 3)°, формировались при комнатной температуре путем осаждения смачивающей пленки суспензии наночастиц SiO₂ в декане на ПЭО-слой.

Представленные на рисунке 7 СЭМ-изображения показали, что толщина ГФ покрытия составляла один монослой, в то время как толщина СГФ нанокомпозитного покрытия не превышала 1–3 мкм. Многомодальная шероховатость поверхности, обусловленная агрегацией наночастиц аэросила (рисунок 7 г, д, е), и низкая поверхностная энергия обеспечивали гетерогенный

режим смачивания СГФ покрытий, в то время как ГФ покрытия при длительном контакте с электролитом характеризуются гомогенным режимом смачивания.

Рисунок 7 – СЭМ-изображения образцов из сплава МА8 Импедансные спектры, с ГФ покрытием (а, б, в) и СГФ покрытием (г, д, е) демонстрируют существенно

более высокие антикоррозионные свойства образцов с гидрофобным (рисунок 8 а, кривая 3) и супергидрофобным (рисунок 8 а, кривая 4) слоями на поверхности по сравнению с образцом без покрытия и образцом с ПЭО-покрытием.

Значение модуля импеданса на низких частотах (|Z|_{f = 0,005 Гц}), характеризующее коррозионные свойства материалов, в начальный период выдержки образцов в хлоридсодержащей среде достигает для ГФ покрытия

Рисунок 8 – Зависимости модуля импеданса (а) и фазового угла (б) от частоты для образцов из сплава МА8 без покрытия (1), с ПЭО-покрытием (2), ГФ (3) и СГФ (4) покрытиями

1,4·10⁶ Ом·см² и для СГФ покрытия – 2,5·10⁷ Ом·см², что более чем в 20 и в 400 раз соответственно выше сопротивления базового ПЭОслоя (6,2·10⁴ Ом·см²).

Данные по эволюции углов смачивания со временем однозначно указывают на существенное замедление коррозионного процесса после нанесения ГФ слоя (рисунок 9 а, кривая 2) на образец с ПЭО-

покрытием (рисунок 9 а, кривая 1). Наиболее значительное ингибирование коррозионного процесса происходит на образцах с СГФ покрытием (рисунок 9 а, кривая 3).

Для ГФ и СГФ покрытий эволюция поверхностного натяжения (рисунок 9 б) показывает незначительное снижение (около 5 мН/м) в течение 24 часов контакта с агрессивной средой, высокую стабильность что указывает на осажденного монослоя ГФ агента для обоих композиционных покрытий. Для СГФ слоя поверхностного уменьшение натяжения происходит более плавно, в сравнении с ГФ покрытием, что косвенно указывает на большую стабильность гидрофобных свойств ν CΓΦ покрытия, так как их поверхность обладает многомодальной шероховатостью и, как следствие,

15

демонстрирует более высокий угол смачивания $(166 \pm 3)^{\circ}$.

В четвертой главе приведены исследования, направленные на изменение морфологической структуры поверхностного слоя: его шероховатости, пористости, создание многомодальности с использованием короткоимпульсной поляризации при ПЭО (длительность импульсов 5 мкс). При этом исследовалось влияние коэффициента заполнения сигнала на электрохимические, механические и гидрофобные свойства получаемых поверхностных слоёв.

С этой целью был разработан режим ПЭО, параметры которого и основные характеристики формируемых ПЭО-слоев на образцах из сплава алюминия АМгЗ представлены в таблице 2. Оксидирование проводили в электролите, содержащем: 0,6 г/л NaF, 5 г/л C₄H₄O₆K₂·0,5H₂O, 10 г/л Na₂MoO₄·2H₂O, 10 г/л Na₂B₄O₇·10H₂O и 10 г/л Na₃PO₄·12H₂O.

Образец В	Время ПЭО, мин.	D	<i>Q</i> , Кл	Толщина ПЭО-слоя, мкм	Пористость, %		
					Поверхность	Поперечный шлиф	
1		0,06	108 ± 3	3,6 ± 0,4	2,88	11,13	
2	30	0,12	137 ± 5	$4,6 \pm 0,4$	2,19	9,64	
3		0,21	176 ± 2	$5,3 \pm 0,3$	0,85	6,95	
4		0,06	192 ± 8	$5,8 \pm 1,6$	1,49	8,38	
5	60	0,12	275 ± 3	$8,2 \pm 1,6$	1,39	7,52	
6		0,21	351 ± 4	11,6 ± 1,9	0,79	6,03	

Таблица 2 – Условия проведения процесса, толщина и пористость ПЭО-слоев

Для формирования оксидных слоев использовали биполярный режим с длительностью обработки 30 и 60 мин. В анодный период напряжение увеличивали потенциодинамически от 30 до 360 В со скоростью 65 В/мин. После этого скорость роста напряжения снижали до 2,5 или 1,1 В/мин до достижения конечного напряжения 420 В и общего времени оксидирования 30 и 60 мин соответственно. В катодный период в обоих случаях реализовывали гальваностатический режим при плотности тока 0,1 А/см². Для обеспечения необходимых значений коэффициента заполнения D (таблица 2) паузы между импульсами установили равными 19 мкс (D=0,21), 37 мкс (D=0,12) и 78 мкс (D=0,06).

Анализ экспериментальных данных, представленных в таблице 2, свидетельствует о том, что при увеличении коэффициента заполнения с 0,06 до 0,12 количество электричества, затраченного на проведение оксидирования в течение 30 мин, возрастало в 1,27 раза, а при увеличении коэффициента заполнения до 0,21 – в 1,63 раза. При оксидировании в течение 60 мин повышение D до 0,12 вызывало возрастание Q в 1,43 раза, а до 0,21 – в 1,83 раза. коэффициента Следовательно, увеличением с заполнения мощность микроразрядов повышается, что увеличивает интенсивность плавления оксидного слоя и включения в его состав продуктов диссоциации компонентов электролита, что, в свою очередь, более интенсивно изменяет морфологию и состав ПЭО-покрытия. Это объясняет увеличение угла смачивания водой от $(99 \pm 3)^{\circ}$ до $(123 \pm 3)^{\circ}$ при увеличении *D* от 0,06 до 0,21 и времени оксидирования с 30 до 60 мин. Кроме того, при повышении D росла толщина формируемых в

Рисунок 10 – СЭМ-изображения (a-e – ×1000, a' e' – ×5000) ПЭО-покрытий, сформированных за 30 мин при D = 0,06 (а и a'); 0,12 (б и б'); 0,21 (в и в') и за 60 мин при D = 0,06 (г и г'); 0,12 (д и д'); 0,21 (е и е')

биполярном режиме покрытий и уменьшалась их пористость. Увеличение времени процесса оксидирования в 2 раза (60 мин) приводило к соответствующему двукратному росту толщины покрытий (таблица 2).

Анализ СЭМ-изображений показывает, что диаметр пор ПЭО-слоев, сформированных за 30 и 60 мин, изменяется в диапазоне 0,5–5 мкм (рисунок 10). СЭМ-фотографии свидетельствуют о равномерном распределении пор по поверхности. Увеличение времени процесса ПЭО до 60 мин (рисунок 10 г и г'-е и е'), позволяет снизить пористость, по сравнению с пленками, сформированными за 30 минут (рисунок 10 а и а'-в и в').

Рисунок 11 – СЭМ-изображения поперечных шлифов ПЭО-покрытий, сформированных за 30 и 60 мин соответственно: при D = 0,06 (а и г), D = 0,12 (б и д), D = 0,21 (в и е)

пористости Оценка по СЭМ-изображениям поперечных шлифов покрытий (рисунок 11, таблица 2), подтвердила, что ПЭО-слой образца № 1, сформированный при D = 0.06течение 30 МИН, имеет наибольшую пористость %. 11,13 В тоже время,

увеличение времени оксидирования с 30 до 60 мин при D = 0,21 уменьшило пористость в 1,15 раза – с 6,95 до 6,05 %. Анализ рисунка 11 позволяет сделать вывод, что увеличение толщины и уменьшение пористости находятся в прямой зависимости от характеристик поляризующего сигнала. Общая тенденция заключается в том, что с увеличением коэффициента заполнения площадь усредненной поры уменьшается, а распределение пор по размерам становится более равномерным. Вместе с этим, энергодисперсионным анализом было установлено увеличение в составе покрытия молибдена (от 0,3 до 1,1 ат. %) и углерода (от 11,8 до 23,9 ат. %), а рентгенофазовый анализ (РФА) показал увеличение интенсивности пиков, соответствующих карбидам молибдена и алюминия (Al₂Mo₃C). Следовательно, при увеличении времени ПЭО и D до 0,21, повышенная мощность поляризующего сигнала, в сравнении с 30 мин режимом при D = 0.06, способствует большему увеличению температуры микроразрядов. При этом, согласно литературному анализу, при температурах, превышающих 3000 К интенсифицируется термолиз воды, приводящий к образованию водорода, а следовательно, преимущественно восстановительной атмосферы, в которой происходит формирование карбида молибдена и алюминия.

Подтверждением вышеизложенного являются результаты рентгеновской

фотоэлектронной спектроскопии (РФЭС), полученные после предварительной

после (2) Ar^+ травления поверхности образца с ПЭО-покрытием, полученным за 60 мин при D = 0,21; спектры высокого разрешения Mo 3d (б) и Al 2P (в)

Рисунок 13 — СЭМ-изображение и распределение элементов по поперечному сечению образца с ПЭО-покрытием, сформированным за 60 мин при D = 0,21

термообработки при 600 °С в воздушной атмосфере и 5 мин Ar⁺ травления образца с ПЭО-слоем, сформированным в течение 60 мин и при D = 0,21 (рисунок 12 а). Обнаруженные пики, соответствующие карбидам молибдена (MoC_x) (рисунок 12 б) и алюминия (AlC_x) (рисунок 12 в), концентрация которых не превышала 0,4 и 1,8 ат. % соответственно, подтверждают присутствие в поверхностном слое Al₂Mo₃C.

В время, тоже картированием элементов было сопоставлено распределение углерода, алюминия И молибдена по поперечному сечению покрытия (рисунок 13) и установлено, что карбиды, определенные с помощью РФА, присутствуют в ПЭО-слое преимущественно на границе металл/покрытие.

Таким образом, высокой твердостью карбидов (у МоС до 15 ГПа) в совокупности с большим их содержанием вблизи беспористого подслоя покрытия, можно объяснить наблюдаемую корреляцию роста значений микротвердости покрытий с увеличением *D* и времени ПЭО (таблица 3). Проведение при нагрузке 300 мΗ динамической микротвердометрии показало для образца №6 превышение в 5,7 раза микротвердости металлической подложки.

Таблица 3 – Микротвердость, значения критических нагрузок *Lc*₂ и *Lc*₃, износа и количества циклов для оксидных слоев

		-					
Образец	Время ПЭО, мин.	D	Универсальная микротвердость, ГПа	<i>Lc</i> ₂ , H	<i>Lc</i> ₃ , H	Износ, мм ³ /(Н·м)	Количество циклов
1		0,06	$1,5 \pm 0,1$	4,9 ± 0,3	5,9 ± 0,2	3,54.10-3	126
2	30	0,12	$2,5 \pm 0,3$	5,1 ± 0,1	6 , 0 ± 0 , 1	3,51.10-3	164
3		0,21	3,1 ± 0,4	5,4 ± 0,4	6,3 ± 0,3	3,45.10-3	190
4		0,06	3,3 ± 0,8	5,3 ± 0,2	6,5 ± 0,4	3,29.10-3	209
5	60	0,12	3,7 ± 1,5	6,3 ± 0,4	6,8±0,6	3,28.10-3	220
6		0,21	$5,4 \pm 0,6$	$7,8 \pm 0,3$	9,2±0,2	3,09.10-3	252
Бе	з покрытия		0,9 ± 0,1			_	

Примечание. Фиксация количества циклов производилась при достижении контртелом металлической подложки.

Данные скретч-тестирования при увеличении нагрузки от 1 до 15 H со скоростью 8,5 H/мин показали хорошее сцепление покрытия с подложкой (рисунок 14). Путем сопоставления фотографий царапин и данных акустической эмиссии, были определены критические нагрузки (таблица 3): *Lc*₂ (от 4,9 до 7,8 H), при которой покрытие начинает отслаиваться от металлической подложки

Рисунок 14 – Оптические фотографии царапин и данные акустической эмиссии для образцов с ПЭО-слоями, сформированные за 30 и 60 мин соответственно: при D = 0,06 (1 и 4), D = 0,12 (2 и 5), D = 0,21 (3 и 6)

исследуемых образцов и Lc₃ (от 5,9 до 9,2 Н), при которой протирается покрытие ДО металла. Трибологические испытания с использованием корундового шара в качестве контртела при нагрузке 10 Н линейной И скорости вращения 50 мм/с, показали, что поверхностные слои,

формируемые бо́льших коэффициентах при заполнения времени И оксидирования, выдерживают в 1,3-1,5 раза больше циклов истирания до металла (252 цикла) и обеспечивают снижение износа до 3,09·10⁻³ мм³/(Н м), чем покрытия, сформированные при меньшей длительности оксидирования и меньшем D

(126 циклов, 3,54·10⁻³ мм³/(Н·м)).

Анализ электрохимических данных (рисунок 15) свидетельствует о том, что барьерные свойства и надежность ингибирования процесса коррозии у исследуемых ПЭО-слоев значительно увеличиваются С (таблица 2), увеличением Q пропускаемого через образец, в связи с чем наблюдается более формирование плотных (пористость по поперечному шлифу~6 %) и с большей толщиной ($11,6 \pm 1,9$ мкм)

защитных покрытий. Среди сформированных в исследуемом диапазоне D и времени ПЭО защитных слоев, наибольшее снижение плотности тока коррозии (до 2,4.10⁻¹⁰ A/cm^2) наблюдается у покрытий, полученных в течение 60 мин при D = 0.21.

ЗАКЛЮЧЕНИЕ

1. Изучены закономерности формирования гибридных гидрофобных покрытий на металлах и сплавах с использованием метода плазменного электролитического оксидирования и гидрофобного агента; предложен способ формирования сплаве АМг3 защитного на алюминиевом покрытия, заключающийся в обработке дисперсией наноразмерных частиц диоксида кремния в гидрофобном агенте предварительно сформированного ПЭО-слоя, включающего в свой состав микротрубки. Сформированное покрытие обладает супергидрофобными свойствами (значение контактного угла равно 165 ± 3°, угла скатывания – $8 \pm 3^{\circ}$) и снижает плотность тока коррозии в 3 % NaCl более чем на 7 порядков величины по сравнению с материалом без покрытия.

2. Разработан способ формирования антикоррозионных защитных покрытий на магниевом сплаве МА8, заключающийся в формировании базового ПЭО-слоя с последующим кипячением в жидком стекле с целью увеличения хемосорбционно-активных центров, обеспечивающих на поверхности материала химическую связь с гидрофобным агентом. Композиционное супергидрофобное покрытие обеспечивает снижение плотности тока коррозии обрабатываемого материала более чем на 3 порядка по сравнению с магниевым сплавом без покрытия.

3. Установлены причины, обусловливающие высокие антикоррозионные свойства формируемых на магниевом и алюминиевом сплавах композиционных покрытий. Многоуровневый рельеф поверхности, образуемый базовым барьерным ПЭО-слоем и наночастицами диоксида кремния, а также низкая поверхностная гидрофобного энергия химически связанного агента обеспечивают формирование трехфазной границы раздела между покрытием с захваченными на его неровностях воздушными пузырьками и коррозионно-активной средой, в результате чего площадь контакта материала покрытия с агрессивной хлоридсодержащей средой существенно снижается. В сочетании с низкой долей молекул гидрофобного агента, слабо связанных с материалом покрытия, эти обеспечивают значительную стабильность супергидрофобных факторы покрытий при эксплуатации в хлоридсодержащей коррозионно-активной среде.

4. Разработана устойчивая электролитическая система, содержащая органические ($C_4H_4O_6K_2 \cdot 0, 5 \cdot H_2O$) и неорганические (NaF, Na₂MoO₄·2H₂O, $Na_2B_4O_7 \cdot 10H_2O$, $Na_3PO_4 \cdot 12H_2O$) компоненты, обеспечивающая формирование на АМг3 методом плазменного алюминиевом сплаве электролитического оксидирования покрытий с высокими антикоррозионными и механическими характеристиками. Формируемые ПЭО-покрытия уменьшают плотность тока коррозии на 3 порядка величины в сравнении с незащищенным сплавом алюминия. Присутствие в электролите молибдата натрия, а также применяемые режимы поляризации, обеспечивают образование в покрытиях карбида молибдена и алюминия (Al₂Mo₃C), повышая микротвердость в 2,5–3 раза, по сравнению с материалом подложки.

5. Разработаны базовых режимы формирования ПЭО-слоев на алюминиевом сплаве АМг3 с использованием микросекундных импульсов тока поляризующего сигнала. Применение разработанных режимов позволяет в зависимости от используемого коэффициента заполнения в широком диапазоне пористость формируемых ПЭО-покрытий (поверхностная регулировать пористость может меняться в 3,5 раза), что в свою очередь, увеличивает свойства ПЭО-слоев (увеличение антикоррозионные значений поляризационного сопротивления на 2,5-3 порядка при соответствующем уменьшении плотности тока коррозии). Применение короткоимпульсного поляризующего сигнала обеспечило в более широком диапазоне управление морфологией, структурой и химическим составом, что, в свою очередь, значительно увеличило гидрофобные свойства ПЭО-покрытий (угол смачивания увеличился от 99 до 123°).

Основное содержание диссертации изложено в следующих работах: Статьи, опубликованные в журналах, рекомендованных ВАК:

- Gnedenkov S.V., Egorkin V.S., Sinebryukhov S.L., Vyaliy I.E., Pashinin A.S., Emelyanenko A.M., Boinovich L.B. Formation and electrochemical properties of the superhydrophobic nanocomposite coating on PEO pretreated Mg–Mn–Ce magnesium alloy // Surf. Coat. Technol. 2013. Vol. 232. P. 240–246.
- Гнеденков С.В., Егоркин В.С., Синебрюхов С.Л., Вялый И.Е., Емельяненко А.М., Бойнович Л.Б. Супергидрофобные защитные покрытия на сплаве алюминия // Вестник ДВО РАН. 2014. № 2 (174). С. 52–61.
- Егоркин В.С., Вялый И.Е., Синебрюхов С.Л., Гнеденков С.В. Формирование твёрдых, износостойких ПЭО-покрытий на сплаве алюминия АМг3 // Вестник ДВО РАН. 2015. № 4. С. 53–61.
- Гнеденков С.В., Егоркин В.С., Синебрюхов С.Л., Вялый И.Е. Электрохимические свойства ПЭО-покрытий на алюминиевом сплаве, обработанных раствором гидрофобного агента // Цветные металлы. 2015. № 8. С. 55–60.
- 5. Egorkin V.S., Sinebryukhov S.L., Vyaliy I.E., Gnedenkov S.V. Evaluation of electrochemical properties of the PEO-coatings treated with hydrophobic agent

solution on aluminium alloy // Solid State Phenomena. 2016. Vol. 245. P. 116–120.

- Egorkin V., Vyaliy I., Sinebryukhov S., Gnedenkov S. Duty Cycle of the polarizing signal influence on morphology and properties of the PEO-coating on aluminium alloy // Solid State Phenomena. 2016. Vol. 245. P. 121–129.
- Gnedenkov S.V., Sinebryukhov S.L., Egorkin V.S., Vyaliy I.E. Wettability and electrochemical properties of the highly hydrophobic coatings on PEO-pretreated aluminum alloy // Surf. Coat. Technol. 2016. Vol. 307. P. 1241–1248.
- Егоркин В.С., Вялый И.Е., Синебрюхов С.Л., Минаев А.Н., Гнеденков С.В. Морфологические особенности и механические свойства покрытий, формируемых плазменным электролитическим оксидированием на сплаве алюминия АМг3 // Вестник инженерной школы ДВФУ. 2018. № 4. С. 31–40.
- Egorkin V.S., Gnedenkov S.V., Sinebryukhov S.L., Vyaliy I.E., Gnedenkov A.S., Chizhikov R.G. Increasing thickness and protective properties of PEO-coatings on aluminum alloy // Surf. Coat. Technol. 2018. Vol. 334. P. 29–42.
- Егоркин В.С., Вялый И.Е., Синебрюхов С.Л., Минаев А.Н., Гнеденков С.В. Состав и барьерные свойства плазменно-электролитических защитных покрытий на алюминиевых сплавах, применяемых в морской технике // Вестник инженерной школы ДВФУ. 2019. № 1(38). С. 65–74.
- Egorkin V.S., Vyaliy I.E., Gnedenkov A.S., Izotov N.V., Tolkanov D.K., Runov A.K., Minaev A.N., Sinebryukhov S.L., Gnedenkov S.V. Influence of formation conditions on corrosion behavior of PEO-coatings during salt-spray test // Solid State Phenomena. 2020. Vol. 312. P. 319–324.

Патенты:

- Патент РФ на изобретение № 2567776 Гнеденков С.В., Егоркин В.С., Емельяненко А.М., Вялый И.Е., Бойнович Л.Б., Синебрюхов С.Л. Способ получения защитных супергидрофобных покрытий на сплавах алюминия. Опубл. 10.11.2015, Бюл. №31.
- Патент РФ на изобретение № 2677388 Гнеденков С.В., Синебрюхов С.Л., Егоркин В.С., Вялый И.Е. Способ получения защитных покрытий на вентильных металлах и их сплавах. Опубл. 16.01.2019, Бюл. №2.